mirror of
https://gitlab.freedesktop.org/mesa/mesa.git
synced 2025-12-21 05:00:09 +01:00
panfrost/midgard: Extend RA to non-vec4 sources
This represents a major break with the former RA design. We now use conflicting register classes to represent the subdivision of Midgard's 128-bit registers into varying sizes and arrangement. We determine class based on the number of components in the instructions' masks. To support this, we include a number of helpers in the RA to allow composing swizzles and masks, such that MIR written implicitly assuming .xyzw sources can be transformed to use actual (non-aligned) sources. The net result is a marked decrease in register pressure on non-vec4-exclusive shaders. We could still be doing much better. Not implemented yet are: - Register spilling - Per-component liveness Signed-off-by: Alyssa Rosenzweig <alyssa.rosenzweig@collabora.com> Reviewed-by: Ryan Houdek <Sonicadvance1@gmail.com>
This commit is contained in:
parent
c1715b558a
commit
2d98022330
1 changed files with 283 additions and 82 deletions
|
|
@ -22,7 +22,101 @@
|
||||||
*/
|
*/
|
||||||
|
|
||||||
#include "compiler.h"
|
#include "compiler.h"
|
||||||
|
#include "midgard_ops.h"
|
||||||
#include "util/register_allocate.h"
|
#include "util/register_allocate.h"
|
||||||
|
#include "util/u_math.h"
|
||||||
|
|
||||||
|
/* For work registers, we can subdivide in various ways. So we create
|
||||||
|
* classes for the various sizes and conflict accordingly, keeping in
|
||||||
|
* mind that physical registers are divided along 128-bit boundaries.
|
||||||
|
* The important part is that 128-bit boundaries are not crossed.
|
||||||
|
*
|
||||||
|
* For each 128-bit register, we can subdivide to 32-bits 10 ways
|
||||||
|
*
|
||||||
|
* vec4: xyzw
|
||||||
|
* vec3: xyz, yzw
|
||||||
|
* vec2: xy, yz, zw,
|
||||||
|
* vec1: x, y, z, w
|
||||||
|
*
|
||||||
|
* For each 64-bit register, we can subdivide similarly to 16-bit
|
||||||
|
* (TODO: half-float RA, not that we support fp16 yet)
|
||||||
|
*/
|
||||||
|
|
||||||
|
#define WORK_STRIDE 10
|
||||||
|
|
||||||
|
/* Prepacked masks/swizzles for virtual register types */
|
||||||
|
static unsigned reg_type_to_mask[WORK_STRIDE] = {
|
||||||
|
0xF, /* xyzw */
|
||||||
|
0x7, 0x7 << 1, /* xyz */
|
||||||
|
0x3, 0x3 << 1, 0x3 << 2, /* xy */
|
||||||
|
0x1, 0x1 << 1, 0x1 << 2, 0x1 << 3 /* x */
|
||||||
|
};
|
||||||
|
|
||||||
|
static unsigned reg_type_to_swizzle[WORK_STRIDE] = {
|
||||||
|
SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_W),
|
||||||
|
|
||||||
|
SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_W),
|
||||||
|
SWIZZLE(COMPONENT_Y, COMPONENT_Z, COMPONENT_W, COMPONENT_W),
|
||||||
|
|
||||||
|
SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_W),
|
||||||
|
SWIZZLE(COMPONENT_Y, COMPONENT_Z, COMPONENT_Z, COMPONENT_W),
|
||||||
|
SWIZZLE(COMPONENT_Z, COMPONENT_W, COMPONENT_Z, COMPONENT_W),
|
||||||
|
|
||||||
|
SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_W),
|
||||||
|
SWIZZLE(COMPONENT_Y, COMPONENT_Y, COMPONENT_Z, COMPONENT_W),
|
||||||
|
SWIZZLE(COMPONENT_Z, COMPONENT_Y, COMPONENT_Z, COMPONENT_W),
|
||||||
|
SWIZZLE(COMPONENT_W, COMPONENT_Y, COMPONENT_Z, COMPONENT_W),
|
||||||
|
};
|
||||||
|
|
||||||
|
struct phys_reg {
|
||||||
|
unsigned reg;
|
||||||
|
unsigned mask;
|
||||||
|
unsigned swizzle;
|
||||||
|
};
|
||||||
|
|
||||||
|
/* Given the mask/swizzle of both the register and the original source,
|
||||||
|
* compose to find the actual mask/swizzle to give the hardware */
|
||||||
|
|
||||||
|
static unsigned
|
||||||
|
compose_writemask(unsigned mask, struct phys_reg reg)
|
||||||
|
{
|
||||||
|
/* Note: the reg mask is guaranteed to be contiguous. So we shift
|
||||||
|
* into the X place, compose via a simple AND, and shift back */
|
||||||
|
|
||||||
|
unsigned shift = __builtin_ctz(reg.mask);
|
||||||
|
return ((reg.mask >> shift) & mask) << shift;
|
||||||
|
}
|
||||||
|
|
||||||
|
static unsigned
|
||||||
|
compose_swizzle(unsigned swizzle, unsigned mask, struct phys_reg reg, struct phys_reg dst)
|
||||||
|
{
|
||||||
|
unsigned out = 0;
|
||||||
|
|
||||||
|
for (unsigned c = 0; c < 4; ++c) {
|
||||||
|
unsigned s = (swizzle >> (2*c)) & 0x3;
|
||||||
|
unsigned q = (reg.swizzle >> (2*s)) & 0x3;
|
||||||
|
|
||||||
|
out |= (q << (2*c));
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Based on the register mask, we need to adjust over. E.g if we're
|
||||||
|
* writing to yz, a base swizzle of xy__ becomes _xy_. Save the
|
||||||
|
* original first component (x). But to prevent duplicate shifting
|
||||||
|
* (only applies to ALU -- mask param is set to xyzw out on L/S to
|
||||||
|
* prevent changes), we have to account for the shift inherent to the
|
||||||
|
* original writemask */
|
||||||
|
|
||||||
|
unsigned rep = out & 0x3;
|
||||||
|
unsigned shift = __builtin_ctz(dst.mask) - __builtin_ctz(mask);
|
||||||
|
unsigned shifted = out << (2*shift);
|
||||||
|
|
||||||
|
/* ..but we fill in the gaps so it appears to replicate */
|
||||||
|
|
||||||
|
for (unsigned s = 0; s < shift; ++s)
|
||||||
|
shifted |= rep << (2*s);
|
||||||
|
|
||||||
|
return shifted;
|
||||||
|
}
|
||||||
|
|
||||||
/* When we're 'squeezing down' the values in the IR, we maintain a hash
|
/* When we're 'squeezing down' the values in the IR, we maintain a hash
|
||||||
* as such */
|
* as such */
|
||||||
|
|
@ -54,7 +148,7 @@ midgard_ra_select_callback(struct ra_graph *g, BITSET_WORD *regs, void *data)
|
||||||
{
|
{
|
||||||
/* Choose the first available register to minimise reported register pressure */
|
/* Choose the first available register to minimise reported register pressure */
|
||||||
|
|
||||||
for (int i = 0; i < 16; ++i) {
|
for (int i = 0; i < (16 * WORK_STRIDE); ++i) {
|
||||||
if (BITSET_TEST(regs, i)) {
|
if (BITSET_TEST(regs, i)) {
|
||||||
return i;
|
return i;
|
||||||
}
|
}
|
||||||
|
|
@ -64,30 +158,48 @@ midgard_ra_select_callback(struct ra_graph *g, BITSET_WORD *regs, void *data)
|
||||||
return 0;
|
return 0;
|
||||||
}
|
}
|
||||||
|
|
||||||
/* Determine the actual hardware from the index based on the RA results or special values */
|
/* Helper to return the default phys_reg for a given register */
|
||||||
|
|
||||||
static int
|
static struct phys_reg
|
||||||
dealias_register(compiler_context *ctx, struct ra_graph *g, int reg, int maxreg)
|
default_phys_reg(int reg)
|
||||||
{
|
{
|
||||||
|
struct phys_reg r = {
|
||||||
|
.reg = reg,
|
||||||
|
.mask = 0xF, /* xyzw */
|
||||||
|
.swizzle = 0xE4 /* xyzw */
|
||||||
|
};
|
||||||
|
|
||||||
|
return r;
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Determine which physical register, swizzle, and mask a virtual
|
||||||
|
* register corresponds to */
|
||||||
|
|
||||||
|
static struct phys_reg
|
||||||
|
index_to_reg(compiler_context *ctx, struct ra_graph *g, int reg)
|
||||||
|
{
|
||||||
|
/* Check for special cases */
|
||||||
if (reg >= SSA_FIXED_MINIMUM)
|
if (reg >= SSA_FIXED_MINIMUM)
|
||||||
return SSA_REG_FROM_FIXED(reg);
|
return default_phys_reg(SSA_REG_FROM_FIXED(reg));
|
||||||
|
else if ((reg < 0) || !g)
|
||||||
|
return default_phys_reg(REGISTER_UNUSED);
|
||||||
|
|
||||||
if (reg >= 0) {
|
/* Special cases aside, we pick the underlying register */
|
||||||
assert(reg < maxreg);
|
int virt = ra_get_node_reg(g, reg);
|
||||||
assert(g);
|
|
||||||
int r = ra_get_node_reg(g, reg);
|
|
||||||
ctx->work_registers = MAX2(ctx->work_registers, r);
|
|
||||||
return r;
|
|
||||||
}
|
|
||||||
|
|
||||||
switch (reg) {
|
/* Divide out the register and classification */
|
||||||
case SSA_UNUSED_0:
|
int phys = virt / WORK_STRIDE;
|
||||||
case SSA_UNUSED_1:
|
int type = virt % WORK_STRIDE;
|
||||||
return REGISTER_UNUSED;
|
|
||||||
|
|
||||||
default:
|
struct phys_reg r = {
|
||||||
unreachable("Unknown SSA register alias");
|
.reg = phys,
|
||||||
}
|
.mask = reg_type_to_mask[type],
|
||||||
|
.swizzle = reg_type_to_swizzle[type]
|
||||||
|
};
|
||||||
|
|
||||||
|
/* Report that we actually use this register, and return it */
|
||||||
|
ctx->work_registers = MAX2(ctx->work_registers, phys);
|
||||||
|
return r;
|
||||||
}
|
}
|
||||||
|
|
||||||
/* This routine performs the actual register allocation. It should be succeeded
|
/* This routine performs the actual register allocation. It should be succeeded
|
||||||
|
|
@ -96,23 +208,54 @@ dealias_register(compiler_context *ctx, struct ra_graph *g, int reg, int maxreg)
|
||||||
struct ra_graph *
|
struct ra_graph *
|
||||||
allocate_registers(compiler_context *ctx)
|
allocate_registers(compiler_context *ctx)
|
||||||
{
|
{
|
||||||
|
/* The number of vec4 work registers available depends on when the
|
||||||
|
* uniforms start, so compute that first */
|
||||||
|
|
||||||
|
int work_count = 16 - MAX2((ctx->uniform_cutoff - 8), 0);
|
||||||
|
|
||||||
|
int virtual_count = work_count * WORK_STRIDE;
|
||||||
|
|
||||||
/* First, initialize the RA */
|
/* First, initialize the RA */
|
||||||
struct ra_regs *regs = ra_alloc_reg_set(NULL, 32, true);
|
struct ra_regs *regs = ra_alloc_reg_set(NULL, virtual_count, true);
|
||||||
|
|
||||||
/* Create a primary (general purpose) class, as well as special purpose
|
int work_vec4 = ra_alloc_reg_class(regs);
|
||||||
* pipeline register classes */
|
int work_vec3 = ra_alloc_reg_class(regs);
|
||||||
|
int work_vec2 = ra_alloc_reg_class(regs);
|
||||||
|
int work_vec1 = ra_alloc_reg_class(regs);
|
||||||
|
|
||||||
int primary_class = ra_alloc_reg_class(regs);
|
unsigned classes[4] = {
|
||||||
int varying_class = ra_alloc_reg_class(regs);
|
work_vec1,
|
||||||
|
work_vec2,
|
||||||
|
work_vec3,
|
||||||
|
work_vec4
|
||||||
|
};
|
||||||
|
|
||||||
/* Add the full set of work registers */
|
/* Add the full set of work registers */
|
||||||
int work_count = 16 - MAX2((ctx->uniform_cutoff - 8), 0);
|
for (int i = 0; i < work_count; ++i) {
|
||||||
for (int i = 0; i < work_count; ++i)
|
int base = WORK_STRIDE * i;
|
||||||
ra_class_add_reg(regs, primary_class, i);
|
|
||||||
|
|
||||||
/* Add special registers */
|
/* Build a full set of subdivisions */
|
||||||
ra_class_add_reg(regs, varying_class, REGISTER_VARYING_BASE);
|
ra_class_add_reg(regs, work_vec4, base);
|
||||||
ra_class_add_reg(regs, varying_class, REGISTER_VARYING_BASE + 1);
|
ra_class_add_reg(regs, work_vec3, base + 1);
|
||||||
|
ra_class_add_reg(regs, work_vec3, base + 2);
|
||||||
|
ra_class_add_reg(regs, work_vec2, base + 3);
|
||||||
|
ra_class_add_reg(regs, work_vec2, base + 4);
|
||||||
|
ra_class_add_reg(regs, work_vec2, base + 5);
|
||||||
|
ra_class_add_reg(regs, work_vec1, base + 6);
|
||||||
|
ra_class_add_reg(regs, work_vec1, base + 7);
|
||||||
|
ra_class_add_reg(regs, work_vec1, base + 8);
|
||||||
|
ra_class_add_reg(regs, work_vec1, base + 9);
|
||||||
|
|
||||||
|
for (unsigned i = 0; i < 10; ++i) {
|
||||||
|
for (unsigned j = 0; j < 10; ++j) {
|
||||||
|
unsigned mask1 = reg_type_to_mask[i];
|
||||||
|
unsigned mask2 = reg_type_to_mask[j];
|
||||||
|
|
||||||
|
if (mask1 & mask2)
|
||||||
|
ra_add_reg_conflict(regs, base + i, base + j);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
/* We're done setting up */
|
/* We're done setting up */
|
||||||
ra_set_finalize(regs, NULL);
|
ra_set_finalize(regs, NULL);
|
||||||
|
|
@ -122,9 +265,12 @@ allocate_registers(compiler_context *ctx)
|
||||||
mir_foreach_instr_in_block(block, ins) {
|
mir_foreach_instr_in_block(block, ins) {
|
||||||
if (ins->compact_branch) continue;
|
if (ins->compact_branch) continue;
|
||||||
|
|
||||||
ins->ssa_args.src0 = find_or_allocate_temp(ctx, ins->ssa_args.src0);
|
|
||||||
ins->ssa_args.src1 = find_or_allocate_temp(ctx, ins->ssa_args.src1);
|
|
||||||
ins->ssa_args.dest = find_or_allocate_temp(ctx, ins->ssa_args.dest);
|
ins->ssa_args.dest = find_or_allocate_temp(ctx, ins->ssa_args.dest);
|
||||||
|
ins->ssa_args.src0 = find_or_allocate_temp(ctx, ins->ssa_args.src0);
|
||||||
|
|
||||||
|
if (!ins->ssa_args.inline_constant)
|
||||||
|
ins->ssa_args.src1 = find_or_allocate_temp(ctx, ins->ssa_args.src1);
|
||||||
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
@ -137,23 +283,42 @@ allocate_registers(compiler_context *ctx)
|
||||||
int nodes = ctx->temp_count;
|
int nodes = ctx->temp_count;
|
||||||
struct ra_graph *g = ra_alloc_interference_graph(regs, nodes);
|
struct ra_graph *g = ra_alloc_interference_graph(regs, nodes);
|
||||||
|
|
||||||
/* Set everything to the work register class, unless it has somewhere
|
/* Determine minimum size needed to hold values, to indirectly
|
||||||
* special to go */
|
* determine class */
|
||||||
|
|
||||||
|
unsigned *found_class = calloc(sizeof(unsigned), ctx->temp_count);
|
||||||
|
|
||||||
mir_foreach_block(ctx, block) {
|
mir_foreach_block(ctx, block) {
|
||||||
mir_foreach_instr_in_block(block, ins) {
|
mir_foreach_instr_in_block(block, ins) {
|
||||||
if (ins->compact_branch) continue;
|
if (ins->compact_branch) continue;
|
||||||
|
|
||||||
if (ins->ssa_args.dest < 0) continue;
|
if (ins->ssa_args.dest < 0) continue;
|
||||||
|
|
||||||
if (ins->ssa_args.dest >= SSA_FIXED_MINIMUM) continue;
|
if (ins->ssa_args.dest >= SSA_FIXED_MINIMUM) continue;
|
||||||
|
|
||||||
int class = primary_class;
|
/* Default to vec4 if we're not sure */
|
||||||
|
|
||||||
ra_set_node_class(g, ins->ssa_args.dest, class);
|
int mask = 0xF;
|
||||||
|
|
||||||
|
if (ins->type == TAG_ALU_4)
|
||||||
|
mask = squeeze_writemask(ins->alu.mask);
|
||||||
|
else if (ins->type == TAG_LOAD_STORE_4)
|
||||||
|
mask = ins->load_store.mask;
|
||||||
|
|
||||||
|
int class = util_logbase2(mask) + 1;
|
||||||
|
|
||||||
|
/* Use the largest class if there's ambiguity, this
|
||||||
|
* handles partial writes */
|
||||||
|
|
||||||
|
int dest = ins->ssa_args.dest;
|
||||||
|
found_class[dest] = MAX2(found_class[dest], class);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
for (unsigned i = 0; i < ctx->temp_count; ++i) {
|
||||||
|
unsigned class = found_class[i];
|
||||||
|
if (!class) continue;
|
||||||
|
ra_set_node_class(g, i, classes[class - 1]);
|
||||||
|
}
|
||||||
|
|
||||||
/* Determine liveness */
|
/* Determine liveness */
|
||||||
|
|
||||||
int *live_start = malloc(nodes * sizeof(int));
|
int *live_start = malloc(nodes * sizeof(int));
|
||||||
|
|
@ -243,7 +408,85 @@ allocate_registers(compiler_context *ctx)
|
||||||
|
|
||||||
/* Once registers have been decided via register allocation
|
/* Once registers have been decided via register allocation
|
||||||
* (allocate_registers), we need to rewrite the MIR to use registers instead of
|
* (allocate_registers), we need to rewrite the MIR to use registers instead of
|
||||||
* SSA */
|
* indices */
|
||||||
|
|
||||||
|
static void
|
||||||
|
install_registers_instr(
|
||||||
|
compiler_context *ctx,
|
||||||
|
struct ra_graph *g,
|
||||||
|
midgard_instruction *ins)
|
||||||
|
{
|
||||||
|
ssa_args args = ins->ssa_args;
|
||||||
|
|
||||||
|
switch (ins->type) {
|
||||||
|
case TAG_ALU_4: {
|
||||||
|
int adjusted_src = args.inline_constant ? -1 : args.src1;
|
||||||
|
struct phys_reg src1 = index_to_reg(ctx, g, args.src0);
|
||||||
|
struct phys_reg src2 = index_to_reg(ctx, g, adjusted_src);
|
||||||
|
struct phys_reg dest = index_to_reg(ctx, g, args.dest);
|
||||||
|
|
||||||
|
unsigned mask = squeeze_writemask(ins->alu.mask);
|
||||||
|
ins->alu.mask = expand_writemask(compose_writemask(mask, dest));
|
||||||
|
|
||||||
|
/* Adjust the dest mask if necessary. Mostly this is a no-op
|
||||||
|
* but it matters for dot products */
|
||||||
|
dest.mask = effective_writemask(&ins->alu);
|
||||||
|
|
||||||
|
midgard_vector_alu_src mod1 =
|
||||||
|
vector_alu_from_unsigned(ins->alu.src1);
|
||||||
|
mod1.swizzle = compose_swizzle(mod1.swizzle, mask, src1, dest);
|
||||||
|
ins->alu.src1 = vector_alu_srco_unsigned(mod1);
|
||||||
|
|
||||||
|
ins->registers.src1_reg = src1.reg;
|
||||||
|
|
||||||
|
ins->registers.src2_imm = args.inline_constant;
|
||||||
|
|
||||||
|
if (args.inline_constant) {
|
||||||
|
/* Encode inline 16-bit constant as a vector by default */
|
||||||
|
|
||||||
|
ins->registers.src2_reg = ins->inline_constant >> 11;
|
||||||
|
|
||||||
|
int lower_11 = ins->inline_constant & ((1 << 12) - 1);
|
||||||
|
|
||||||
|
uint16_t imm = ((lower_11 >> 8) & 0x7) | ((lower_11 & 0xFF) << 3);
|
||||||
|
ins->alu.src2 = imm << 2;
|
||||||
|
} else {
|
||||||
|
midgard_vector_alu_src mod2 =
|
||||||
|
vector_alu_from_unsigned(ins->alu.src2);
|
||||||
|
mod2.swizzle = compose_swizzle(mod2.swizzle, mask, src2, dest);
|
||||||
|
ins->alu.src2 = vector_alu_srco_unsigned(mod2);
|
||||||
|
|
||||||
|
ins->registers.src2_reg = src2.reg;
|
||||||
|
}
|
||||||
|
|
||||||
|
ins->registers.out_reg = dest.reg;
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
|
||||||
|
case TAG_LOAD_STORE_4: {
|
||||||
|
if (OP_IS_STORE(ins->load_store.op)) {
|
||||||
|
/* TODO: use ssa_args for st_vary */
|
||||||
|
ins->load_store.reg = 0;
|
||||||
|
} else {
|
||||||
|
struct phys_reg src = index_to_reg(ctx, g, args.dest);
|
||||||
|
|
||||||
|
ins->load_store.reg = src.reg;
|
||||||
|
|
||||||
|
ins->load_store.swizzle = compose_swizzle(
|
||||||
|
ins->load_store.swizzle, 0xF,
|
||||||
|
default_phys_reg(0), src);
|
||||||
|
|
||||||
|
ins->load_store.mask = compose_writemask(
|
||||||
|
ins->load_store.mask, src);
|
||||||
|
}
|
||||||
|
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
|
||||||
|
default:
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
void
|
void
|
||||||
install_registers(compiler_context *ctx, struct ra_graph *g)
|
install_registers(compiler_context *ctx, struct ra_graph *g)
|
||||||
|
|
@ -251,49 +494,7 @@ install_registers(compiler_context *ctx, struct ra_graph *g)
|
||||||
mir_foreach_block(ctx, block) {
|
mir_foreach_block(ctx, block) {
|
||||||
mir_foreach_instr_in_block(block, ins) {
|
mir_foreach_instr_in_block(block, ins) {
|
||||||
if (ins->compact_branch) continue;
|
if (ins->compact_branch) continue;
|
||||||
|
install_registers_instr(ctx, g, ins);
|
||||||
ssa_args args = ins->ssa_args;
|
|
||||||
|
|
||||||
switch (ins->type) {
|
|
||||||
case TAG_ALU_4:
|
|
||||||
ins->registers.src1_reg = dealias_register(ctx, g, args.src0, ctx->temp_count);
|
|
||||||
|
|
||||||
ins->registers.src2_imm = args.inline_constant;
|
|
||||||
|
|
||||||
if (args.inline_constant) {
|
|
||||||
/* Encode inline 16-bit constant as a vector by default */
|
|
||||||
|
|
||||||
ins->registers.src2_reg = ins->inline_constant >> 11;
|
|
||||||
|
|
||||||
int lower_11 = ins->inline_constant & ((1 << 12) - 1);
|
|
||||||
|
|
||||||
uint16_t imm = ((lower_11 >> 8) & 0x7) | ((lower_11 & 0xFF) << 3);
|
|
||||||
ins->alu.src2 = imm << 2;
|
|
||||||
} else {
|
|
||||||
ins->registers.src2_reg = dealias_register(ctx, g, args.src1, ctx->temp_count);
|
|
||||||
}
|
|
||||||
|
|
||||||
ins->registers.out_reg = dealias_register(ctx, g, args.dest, ctx->temp_count);
|
|
||||||
|
|
||||||
break;
|
|
||||||
|
|
||||||
case TAG_LOAD_STORE_4: {
|
|
||||||
if (OP_IS_STORE_VARY(ins->load_store.op)) {
|
|
||||||
/* TODO: use ssa_args for st_vary */
|
|
||||||
ins->load_store.reg = 0;
|
|
||||||
} else {
|
|
||||||
bool has_dest = args.dest >= 0;
|
|
||||||
int ssa_arg = has_dest ? args.dest : args.src0;
|
|
||||||
|
|
||||||
ins->load_store.reg = dealias_register(ctx, g, ssa_arg, ctx->temp_count);
|
|
||||||
}
|
|
||||||
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
|
|
||||||
default:
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
|
||||||
Loading…
Add table
Reference in a new issue