panfrost/midgard: Extend RA to non-vec4 sources

This represents a major break with the former RA design. We now use
conflicting register classes to represent the subdivision of Midgard's
128-bit registers into varying sizes and arrangement. We determine class
based on the number of components in the instructions' masks. To support
this, we include a number of helpers in the RA to allow composing
swizzles and masks, such that MIR written implicitly assuming .xyzw
sources can be transformed to use actual (non-aligned) sources.

The net result is a marked decrease in register pressure on
non-vec4-exclusive shaders. We could still be doing much better. Not
implemented yet are:

   - Register spilling
   - Per-component liveness

Signed-off-by: Alyssa Rosenzweig <alyssa.rosenzweig@collabora.com>
Reviewed-by: Ryan Houdek <Sonicadvance1@gmail.com>
This commit is contained in:
Alyssa Rosenzweig 2019-05-22 02:45:42 +00:00 committed by Alyssa Rosenzweig
parent c1715b558a
commit 2d98022330

View file

@ -22,7 +22,101 @@
*/ */
#include "compiler.h" #include "compiler.h"
#include "midgard_ops.h"
#include "util/register_allocate.h" #include "util/register_allocate.h"
#include "util/u_math.h"
/* For work registers, we can subdivide in various ways. So we create
* classes for the various sizes and conflict accordingly, keeping in
* mind that physical registers are divided along 128-bit boundaries.
* The important part is that 128-bit boundaries are not crossed.
*
* For each 128-bit register, we can subdivide to 32-bits 10 ways
*
* vec4: xyzw
* vec3: xyz, yzw
* vec2: xy, yz, zw,
* vec1: x, y, z, w
*
* For each 64-bit register, we can subdivide similarly to 16-bit
* (TODO: half-float RA, not that we support fp16 yet)
*/
#define WORK_STRIDE 10
/* Prepacked masks/swizzles for virtual register types */
static unsigned reg_type_to_mask[WORK_STRIDE] = {
0xF, /* xyzw */
0x7, 0x7 << 1, /* xyz */
0x3, 0x3 << 1, 0x3 << 2, /* xy */
0x1, 0x1 << 1, 0x1 << 2, 0x1 << 3 /* x */
};
static unsigned reg_type_to_swizzle[WORK_STRIDE] = {
SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_W),
SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_W),
SWIZZLE(COMPONENT_Y, COMPONENT_Z, COMPONENT_W, COMPONENT_W),
SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_W),
SWIZZLE(COMPONENT_Y, COMPONENT_Z, COMPONENT_Z, COMPONENT_W),
SWIZZLE(COMPONENT_Z, COMPONENT_W, COMPONENT_Z, COMPONENT_W),
SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_W),
SWIZZLE(COMPONENT_Y, COMPONENT_Y, COMPONENT_Z, COMPONENT_W),
SWIZZLE(COMPONENT_Z, COMPONENT_Y, COMPONENT_Z, COMPONENT_W),
SWIZZLE(COMPONENT_W, COMPONENT_Y, COMPONENT_Z, COMPONENT_W),
};
struct phys_reg {
unsigned reg;
unsigned mask;
unsigned swizzle;
};
/* Given the mask/swizzle of both the register and the original source,
* compose to find the actual mask/swizzle to give the hardware */
static unsigned
compose_writemask(unsigned mask, struct phys_reg reg)
{
/* Note: the reg mask is guaranteed to be contiguous. So we shift
* into the X place, compose via a simple AND, and shift back */
unsigned shift = __builtin_ctz(reg.mask);
return ((reg.mask >> shift) & mask) << shift;
}
static unsigned
compose_swizzle(unsigned swizzle, unsigned mask, struct phys_reg reg, struct phys_reg dst)
{
unsigned out = 0;
for (unsigned c = 0; c < 4; ++c) {
unsigned s = (swizzle >> (2*c)) & 0x3;
unsigned q = (reg.swizzle >> (2*s)) & 0x3;
out |= (q << (2*c));
}
/* Based on the register mask, we need to adjust over. E.g if we're
* writing to yz, a base swizzle of xy__ becomes _xy_. Save the
* original first component (x). But to prevent duplicate shifting
* (only applies to ALU -- mask param is set to xyzw out on L/S to
* prevent changes), we have to account for the shift inherent to the
* original writemask */
unsigned rep = out & 0x3;
unsigned shift = __builtin_ctz(dst.mask) - __builtin_ctz(mask);
unsigned shifted = out << (2*shift);
/* ..but we fill in the gaps so it appears to replicate */
for (unsigned s = 0; s < shift; ++s)
shifted |= rep << (2*s);
return shifted;
}
/* When we're 'squeezing down' the values in the IR, we maintain a hash /* When we're 'squeezing down' the values in the IR, we maintain a hash
* as such */ * as such */
@ -54,7 +148,7 @@ midgard_ra_select_callback(struct ra_graph *g, BITSET_WORD *regs, void *data)
{ {
/* Choose the first available register to minimise reported register pressure */ /* Choose the first available register to minimise reported register pressure */
for (int i = 0; i < 16; ++i) { for (int i = 0; i < (16 * WORK_STRIDE); ++i) {
if (BITSET_TEST(regs, i)) { if (BITSET_TEST(regs, i)) {
return i; return i;
} }
@ -64,30 +158,48 @@ midgard_ra_select_callback(struct ra_graph *g, BITSET_WORD *regs, void *data)
return 0; return 0;
} }
/* Determine the actual hardware from the index based on the RA results or special values */ /* Helper to return the default phys_reg for a given register */
static int static struct phys_reg
dealias_register(compiler_context *ctx, struct ra_graph *g, int reg, int maxreg) default_phys_reg(int reg)
{ {
if (reg >= SSA_FIXED_MINIMUM) struct phys_reg r = {
return SSA_REG_FROM_FIXED(reg); .reg = reg,
.mask = 0xF, /* xyzw */
.swizzle = 0xE4 /* xyzw */
};
if (reg >= 0) {
assert(reg < maxreg);
assert(g);
int r = ra_get_node_reg(g, reg);
ctx->work_registers = MAX2(ctx->work_registers, r);
return r; return r;
} }
switch (reg) { /* Determine which physical register, swizzle, and mask a virtual
case SSA_UNUSED_0: * register corresponds to */
case SSA_UNUSED_1:
return REGISTER_UNUSED;
default: static struct phys_reg
unreachable("Unknown SSA register alias"); index_to_reg(compiler_context *ctx, struct ra_graph *g, int reg)
} {
/* Check for special cases */
if (reg >= SSA_FIXED_MINIMUM)
return default_phys_reg(SSA_REG_FROM_FIXED(reg));
else if ((reg < 0) || !g)
return default_phys_reg(REGISTER_UNUSED);
/* Special cases aside, we pick the underlying register */
int virt = ra_get_node_reg(g, reg);
/* Divide out the register and classification */
int phys = virt / WORK_STRIDE;
int type = virt % WORK_STRIDE;
struct phys_reg r = {
.reg = phys,
.mask = reg_type_to_mask[type],
.swizzle = reg_type_to_swizzle[type]
};
/* Report that we actually use this register, and return it */
ctx->work_registers = MAX2(ctx->work_registers, phys);
return r;
} }
/* This routine performs the actual register allocation. It should be succeeded /* This routine performs the actual register allocation. It should be succeeded
@ -96,23 +208,54 @@ dealias_register(compiler_context *ctx, struct ra_graph *g, int reg, int maxreg)
struct ra_graph * struct ra_graph *
allocate_registers(compiler_context *ctx) allocate_registers(compiler_context *ctx)
{ {
/* The number of vec4 work registers available depends on when the
* uniforms start, so compute that first */
int work_count = 16 - MAX2((ctx->uniform_cutoff - 8), 0);
int virtual_count = work_count * WORK_STRIDE;
/* First, initialize the RA */ /* First, initialize the RA */
struct ra_regs *regs = ra_alloc_reg_set(NULL, 32, true); struct ra_regs *regs = ra_alloc_reg_set(NULL, virtual_count, true);
/* Create a primary (general purpose) class, as well as special purpose int work_vec4 = ra_alloc_reg_class(regs);
* pipeline register classes */ int work_vec3 = ra_alloc_reg_class(regs);
int work_vec2 = ra_alloc_reg_class(regs);
int work_vec1 = ra_alloc_reg_class(regs);
int primary_class = ra_alloc_reg_class(regs); unsigned classes[4] = {
int varying_class = ra_alloc_reg_class(regs); work_vec1,
work_vec2,
work_vec3,
work_vec4
};
/* Add the full set of work registers */ /* Add the full set of work registers */
int work_count = 16 - MAX2((ctx->uniform_cutoff - 8), 0); for (int i = 0; i < work_count; ++i) {
for (int i = 0; i < work_count; ++i) int base = WORK_STRIDE * i;
ra_class_add_reg(regs, primary_class, i);
/* Add special registers */ /* Build a full set of subdivisions */
ra_class_add_reg(regs, varying_class, REGISTER_VARYING_BASE); ra_class_add_reg(regs, work_vec4, base);
ra_class_add_reg(regs, varying_class, REGISTER_VARYING_BASE + 1); ra_class_add_reg(regs, work_vec3, base + 1);
ra_class_add_reg(regs, work_vec3, base + 2);
ra_class_add_reg(regs, work_vec2, base + 3);
ra_class_add_reg(regs, work_vec2, base + 4);
ra_class_add_reg(regs, work_vec2, base + 5);
ra_class_add_reg(regs, work_vec1, base + 6);
ra_class_add_reg(regs, work_vec1, base + 7);
ra_class_add_reg(regs, work_vec1, base + 8);
ra_class_add_reg(regs, work_vec1, base + 9);
for (unsigned i = 0; i < 10; ++i) {
for (unsigned j = 0; j < 10; ++j) {
unsigned mask1 = reg_type_to_mask[i];
unsigned mask2 = reg_type_to_mask[j];
if (mask1 & mask2)
ra_add_reg_conflict(regs, base + i, base + j);
}
}
}
/* We're done setting up */ /* We're done setting up */
ra_set_finalize(regs, NULL); ra_set_finalize(regs, NULL);
@ -122,9 +265,12 @@ allocate_registers(compiler_context *ctx)
mir_foreach_instr_in_block(block, ins) { mir_foreach_instr_in_block(block, ins) {
if (ins->compact_branch) continue; if (ins->compact_branch) continue;
ins->ssa_args.src0 = find_or_allocate_temp(ctx, ins->ssa_args.src0);
ins->ssa_args.src1 = find_or_allocate_temp(ctx, ins->ssa_args.src1);
ins->ssa_args.dest = find_or_allocate_temp(ctx, ins->ssa_args.dest); ins->ssa_args.dest = find_or_allocate_temp(ctx, ins->ssa_args.dest);
ins->ssa_args.src0 = find_or_allocate_temp(ctx, ins->ssa_args.src0);
if (!ins->ssa_args.inline_constant)
ins->ssa_args.src1 = find_or_allocate_temp(ctx, ins->ssa_args.src1);
} }
} }
@ -137,23 +283,42 @@ allocate_registers(compiler_context *ctx)
int nodes = ctx->temp_count; int nodes = ctx->temp_count;
struct ra_graph *g = ra_alloc_interference_graph(regs, nodes); struct ra_graph *g = ra_alloc_interference_graph(regs, nodes);
/* Set everything to the work register class, unless it has somewhere /* Determine minimum size needed to hold values, to indirectly
* special to go */ * determine class */
unsigned *found_class = calloc(sizeof(unsigned), ctx->temp_count);
mir_foreach_block(ctx, block) { mir_foreach_block(ctx, block) {
mir_foreach_instr_in_block(block, ins) { mir_foreach_instr_in_block(block, ins) {
if (ins->compact_branch) continue; if (ins->compact_branch) continue;
if (ins->ssa_args.dest < 0) continue; if (ins->ssa_args.dest < 0) continue;
if (ins->ssa_args.dest >= SSA_FIXED_MINIMUM) continue; if (ins->ssa_args.dest >= SSA_FIXED_MINIMUM) continue;
int class = primary_class; /* Default to vec4 if we're not sure */
ra_set_node_class(g, ins->ssa_args.dest, class); int mask = 0xF;
if (ins->type == TAG_ALU_4)
mask = squeeze_writemask(ins->alu.mask);
else if (ins->type == TAG_LOAD_STORE_4)
mask = ins->load_store.mask;
int class = util_logbase2(mask) + 1;
/* Use the largest class if there's ambiguity, this
* handles partial writes */
int dest = ins->ssa_args.dest;
found_class[dest] = MAX2(found_class[dest], class);
} }
} }
for (unsigned i = 0; i < ctx->temp_count; ++i) {
unsigned class = found_class[i];
if (!class) continue;
ra_set_node_class(g, i, classes[class - 1]);
}
/* Determine liveness */ /* Determine liveness */
int *live_start = malloc(nodes * sizeof(int)); int *live_start = malloc(nodes * sizeof(int));
@ -243,20 +408,36 @@ allocate_registers(compiler_context *ctx)
/* Once registers have been decided via register allocation /* Once registers have been decided via register allocation
* (allocate_registers), we need to rewrite the MIR to use registers instead of * (allocate_registers), we need to rewrite the MIR to use registers instead of
* SSA */ * indices */
void static void
install_registers(compiler_context *ctx, struct ra_graph *g) install_registers_instr(
compiler_context *ctx,
struct ra_graph *g,
midgard_instruction *ins)
{ {
mir_foreach_block(ctx, block) {
mir_foreach_instr_in_block(block, ins) {
if (ins->compact_branch) continue;
ssa_args args = ins->ssa_args; ssa_args args = ins->ssa_args;
switch (ins->type) { switch (ins->type) {
case TAG_ALU_4: case TAG_ALU_4: {
ins->registers.src1_reg = dealias_register(ctx, g, args.src0, ctx->temp_count); int adjusted_src = args.inline_constant ? -1 : args.src1;
struct phys_reg src1 = index_to_reg(ctx, g, args.src0);
struct phys_reg src2 = index_to_reg(ctx, g, adjusted_src);
struct phys_reg dest = index_to_reg(ctx, g, args.dest);
unsigned mask = squeeze_writemask(ins->alu.mask);
ins->alu.mask = expand_writemask(compose_writemask(mask, dest));
/* Adjust the dest mask if necessary. Mostly this is a no-op
* but it matters for dot products */
dest.mask = effective_writemask(&ins->alu);
midgard_vector_alu_src mod1 =
vector_alu_from_unsigned(ins->alu.src1);
mod1.swizzle = compose_swizzle(mod1.swizzle, mask, src1, dest);
ins->alu.src1 = vector_alu_srco_unsigned(mod1);
ins->registers.src1_reg = src1.reg;
ins->registers.src2_imm = args.inline_constant; ins->registers.src2_imm = args.inline_constant;
@ -270,22 +451,33 @@ install_registers(compiler_context *ctx, struct ra_graph *g)
uint16_t imm = ((lower_11 >> 8) & 0x7) | ((lower_11 & 0xFF) << 3); uint16_t imm = ((lower_11 >> 8) & 0x7) | ((lower_11 & 0xFF) << 3);
ins->alu.src2 = imm << 2; ins->alu.src2 = imm << 2;
} else { } else {
ins->registers.src2_reg = dealias_register(ctx, g, args.src1, ctx->temp_count); midgard_vector_alu_src mod2 =
vector_alu_from_unsigned(ins->alu.src2);
mod2.swizzle = compose_swizzle(mod2.swizzle, mask, src2, dest);
ins->alu.src2 = vector_alu_srco_unsigned(mod2);
ins->registers.src2_reg = src2.reg;
} }
ins->registers.out_reg = dealias_register(ctx, g, args.dest, ctx->temp_count); ins->registers.out_reg = dest.reg;
break; break;
}
case TAG_LOAD_STORE_4: { case TAG_LOAD_STORE_4: {
if (OP_IS_STORE_VARY(ins->load_store.op)) { if (OP_IS_STORE(ins->load_store.op)) {
/* TODO: use ssa_args for st_vary */ /* TODO: use ssa_args for st_vary */
ins->load_store.reg = 0; ins->load_store.reg = 0;
} else { } else {
bool has_dest = args.dest >= 0; struct phys_reg src = index_to_reg(ctx, g, args.dest);
int ssa_arg = has_dest ? args.dest : args.src0;
ins->load_store.reg = dealias_register(ctx, g, ssa_arg, ctx->temp_count); ins->load_store.reg = src.reg;
ins->load_store.swizzle = compose_swizzle(
ins->load_store.swizzle, 0xF,
default_phys_reg(0), src);
ins->load_store.mask = compose_writemask(
ins->load_store.mask, src);
} }
break; break;
@ -294,6 +486,15 @@ install_registers(compiler_context *ctx, struct ra_graph *g)
default: default:
break; break;
} }
}
void
install_registers(compiler_context *ctx, struct ra_graph *g)
{
mir_foreach_block(ctx, block) {
mir_foreach_instr_in_block(block, ins) {
if (ins->compact_branch) continue;
install_registers_instr(ctx, g, ins);
} }
} }