mirror of
https://gitlab.freedesktop.org/mesa/mesa.git
synced 2025-12-21 02:50:09 +01:00
panfrost/midgard: Extend RA to non-vec4 sources
This represents a major break with the former RA design. We now use conflicting register classes to represent the subdivision of Midgard's 128-bit registers into varying sizes and arrangement. We determine class based on the number of components in the instructions' masks. To support this, we include a number of helpers in the RA to allow composing swizzles and masks, such that MIR written implicitly assuming .xyzw sources can be transformed to use actual (non-aligned) sources. The net result is a marked decrease in register pressure on non-vec4-exclusive shaders. We could still be doing much better. Not implemented yet are: - Register spilling - Per-component liveness Signed-off-by: Alyssa Rosenzweig <alyssa.rosenzweig@collabora.com> Reviewed-by: Ryan Houdek <Sonicadvance1@gmail.com>
This commit is contained in:
parent
c1715b558a
commit
2d98022330
1 changed files with 283 additions and 82 deletions
|
|
@ -22,7 +22,101 @@
|
|||
*/
|
||||
|
||||
#include "compiler.h"
|
||||
#include "midgard_ops.h"
|
||||
#include "util/register_allocate.h"
|
||||
#include "util/u_math.h"
|
||||
|
||||
/* For work registers, we can subdivide in various ways. So we create
|
||||
* classes for the various sizes and conflict accordingly, keeping in
|
||||
* mind that physical registers are divided along 128-bit boundaries.
|
||||
* The important part is that 128-bit boundaries are not crossed.
|
||||
*
|
||||
* For each 128-bit register, we can subdivide to 32-bits 10 ways
|
||||
*
|
||||
* vec4: xyzw
|
||||
* vec3: xyz, yzw
|
||||
* vec2: xy, yz, zw,
|
||||
* vec1: x, y, z, w
|
||||
*
|
||||
* For each 64-bit register, we can subdivide similarly to 16-bit
|
||||
* (TODO: half-float RA, not that we support fp16 yet)
|
||||
*/
|
||||
|
||||
#define WORK_STRIDE 10
|
||||
|
||||
/* Prepacked masks/swizzles for virtual register types */
|
||||
static unsigned reg_type_to_mask[WORK_STRIDE] = {
|
||||
0xF, /* xyzw */
|
||||
0x7, 0x7 << 1, /* xyz */
|
||||
0x3, 0x3 << 1, 0x3 << 2, /* xy */
|
||||
0x1, 0x1 << 1, 0x1 << 2, 0x1 << 3 /* x */
|
||||
};
|
||||
|
||||
static unsigned reg_type_to_swizzle[WORK_STRIDE] = {
|
||||
SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_W),
|
||||
|
||||
SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_W),
|
||||
SWIZZLE(COMPONENT_Y, COMPONENT_Z, COMPONENT_W, COMPONENT_W),
|
||||
|
||||
SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_W),
|
||||
SWIZZLE(COMPONENT_Y, COMPONENT_Z, COMPONENT_Z, COMPONENT_W),
|
||||
SWIZZLE(COMPONENT_Z, COMPONENT_W, COMPONENT_Z, COMPONENT_W),
|
||||
|
||||
SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_W),
|
||||
SWIZZLE(COMPONENT_Y, COMPONENT_Y, COMPONENT_Z, COMPONENT_W),
|
||||
SWIZZLE(COMPONENT_Z, COMPONENT_Y, COMPONENT_Z, COMPONENT_W),
|
||||
SWIZZLE(COMPONENT_W, COMPONENT_Y, COMPONENT_Z, COMPONENT_W),
|
||||
};
|
||||
|
||||
struct phys_reg {
|
||||
unsigned reg;
|
||||
unsigned mask;
|
||||
unsigned swizzle;
|
||||
};
|
||||
|
||||
/* Given the mask/swizzle of both the register and the original source,
|
||||
* compose to find the actual mask/swizzle to give the hardware */
|
||||
|
||||
static unsigned
|
||||
compose_writemask(unsigned mask, struct phys_reg reg)
|
||||
{
|
||||
/* Note: the reg mask is guaranteed to be contiguous. So we shift
|
||||
* into the X place, compose via a simple AND, and shift back */
|
||||
|
||||
unsigned shift = __builtin_ctz(reg.mask);
|
||||
return ((reg.mask >> shift) & mask) << shift;
|
||||
}
|
||||
|
||||
static unsigned
|
||||
compose_swizzle(unsigned swizzle, unsigned mask, struct phys_reg reg, struct phys_reg dst)
|
||||
{
|
||||
unsigned out = 0;
|
||||
|
||||
for (unsigned c = 0; c < 4; ++c) {
|
||||
unsigned s = (swizzle >> (2*c)) & 0x3;
|
||||
unsigned q = (reg.swizzle >> (2*s)) & 0x3;
|
||||
|
||||
out |= (q << (2*c));
|
||||
}
|
||||
|
||||
/* Based on the register mask, we need to adjust over. E.g if we're
|
||||
* writing to yz, a base swizzle of xy__ becomes _xy_. Save the
|
||||
* original first component (x). But to prevent duplicate shifting
|
||||
* (only applies to ALU -- mask param is set to xyzw out on L/S to
|
||||
* prevent changes), we have to account for the shift inherent to the
|
||||
* original writemask */
|
||||
|
||||
unsigned rep = out & 0x3;
|
||||
unsigned shift = __builtin_ctz(dst.mask) - __builtin_ctz(mask);
|
||||
unsigned shifted = out << (2*shift);
|
||||
|
||||
/* ..but we fill in the gaps so it appears to replicate */
|
||||
|
||||
for (unsigned s = 0; s < shift; ++s)
|
||||
shifted |= rep << (2*s);
|
||||
|
||||
return shifted;
|
||||
}
|
||||
|
||||
/* When we're 'squeezing down' the values in the IR, we maintain a hash
|
||||
* as such */
|
||||
|
|
@ -54,7 +148,7 @@ midgard_ra_select_callback(struct ra_graph *g, BITSET_WORD *regs, void *data)
|
|||
{
|
||||
/* Choose the first available register to minimise reported register pressure */
|
||||
|
||||
for (int i = 0; i < 16; ++i) {
|
||||
for (int i = 0; i < (16 * WORK_STRIDE); ++i) {
|
||||
if (BITSET_TEST(regs, i)) {
|
||||
return i;
|
||||
}
|
||||
|
|
@ -64,30 +158,48 @@ midgard_ra_select_callback(struct ra_graph *g, BITSET_WORD *regs, void *data)
|
|||
return 0;
|
||||
}
|
||||
|
||||
/* Determine the actual hardware from the index based on the RA results or special values */
|
||||
/* Helper to return the default phys_reg for a given register */
|
||||
|
||||
static int
|
||||
dealias_register(compiler_context *ctx, struct ra_graph *g, int reg, int maxreg)
|
||||
static struct phys_reg
|
||||
default_phys_reg(int reg)
|
||||
{
|
||||
struct phys_reg r = {
|
||||
.reg = reg,
|
||||
.mask = 0xF, /* xyzw */
|
||||
.swizzle = 0xE4 /* xyzw */
|
||||
};
|
||||
|
||||
return r;
|
||||
}
|
||||
|
||||
/* Determine which physical register, swizzle, and mask a virtual
|
||||
* register corresponds to */
|
||||
|
||||
static struct phys_reg
|
||||
index_to_reg(compiler_context *ctx, struct ra_graph *g, int reg)
|
||||
{
|
||||
/* Check for special cases */
|
||||
if (reg >= SSA_FIXED_MINIMUM)
|
||||
return SSA_REG_FROM_FIXED(reg);
|
||||
return default_phys_reg(SSA_REG_FROM_FIXED(reg));
|
||||
else if ((reg < 0) || !g)
|
||||
return default_phys_reg(REGISTER_UNUSED);
|
||||
|
||||
if (reg >= 0) {
|
||||
assert(reg < maxreg);
|
||||
assert(g);
|
||||
int r = ra_get_node_reg(g, reg);
|
||||
ctx->work_registers = MAX2(ctx->work_registers, r);
|
||||
return r;
|
||||
}
|
||||
/* Special cases aside, we pick the underlying register */
|
||||
int virt = ra_get_node_reg(g, reg);
|
||||
|
||||
switch (reg) {
|
||||
case SSA_UNUSED_0:
|
||||
case SSA_UNUSED_1:
|
||||
return REGISTER_UNUSED;
|
||||
/* Divide out the register and classification */
|
||||
int phys = virt / WORK_STRIDE;
|
||||
int type = virt % WORK_STRIDE;
|
||||
|
||||
default:
|
||||
unreachable("Unknown SSA register alias");
|
||||
}
|
||||
struct phys_reg r = {
|
||||
.reg = phys,
|
||||
.mask = reg_type_to_mask[type],
|
||||
.swizzle = reg_type_to_swizzle[type]
|
||||
};
|
||||
|
||||
/* Report that we actually use this register, and return it */
|
||||
ctx->work_registers = MAX2(ctx->work_registers, phys);
|
||||
return r;
|
||||
}
|
||||
|
||||
/* This routine performs the actual register allocation. It should be succeeded
|
||||
|
|
@ -96,23 +208,54 @@ dealias_register(compiler_context *ctx, struct ra_graph *g, int reg, int maxreg)
|
|||
struct ra_graph *
|
||||
allocate_registers(compiler_context *ctx)
|
||||
{
|
||||
/* The number of vec4 work registers available depends on when the
|
||||
* uniforms start, so compute that first */
|
||||
|
||||
int work_count = 16 - MAX2((ctx->uniform_cutoff - 8), 0);
|
||||
|
||||
int virtual_count = work_count * WORK_STRIDE;
|
||||
|
||||
/* First, initialize the RA */
|
||||
struct ra_regs *regs = ra_alloc_reg_set(NULL, 32, true);
|
||||
struct ra_regs *regs = ra_alloc_reg_set(NULL, virtual_count, true);
|
||||
|
||||
/* Create a primary (general purpose) class, as well as special purpose
|
||||
* pipeline register classes */
|
||||
int work_vec4 = ra_alloc_reg_class(regs);
|
||||
int work_vec3 = ra_alloc_reg_class(regs);
|
||||
int work_vec2 = ra_alloc_reg_class(regs);
|
||||
int work_vec1 = ra_alloc_reg_class(regs);
|
||||
|
||||
int primary_class = ra_alloc_reg_class(regs);
|
||||
int varying_class = ra_alloc_reg_class(regs);
|
||||
unsigned classes[4] = {
|
||||
work_vec1,
|
||||
work_vec2,
|
||||
work_vec3,
|
||||
work_vec4
|
||||
};
|
||||
|
||||
/* Add the full set of work registers */
|
||||
int work_count = 16 - MAX2((ctx->uniform_cutoff - 8), 0);
|
||||
for (int i = 0; i < work_count; ++i)
|
||||
ra_class_add_reg(regs, primary_class, i);
|
||||
for (int i = 0; i < work_count; ++i) {
|
||||
int base = WORK_STRIDE * i;
|
||||
|
||||
/* Add special registers */
|
||||
ra_class_add_reg(regs, varying_class, REGISTER_VARYING_BASE);
|
||||
ra_class_add_reg(regs, varying_class, REGISTER_VARYING_BASE + 1);
|
||||
/* Build a full set of subdivisions */
|
||||
ra_class_add_reg(regs, work_vec4, base);
|
||||
ra_class_add_reg(regs, work_vec3, base + 1);
|
||||
ra_class_add_reg(regs, work_vec3, base + 2);
|
||||
ra_class_add_reg(regs, work_vec2, base + 3);
|
||||
ra_class_add_reg(regs, work_vec2, base + 4);
|
||||
ra_class_add_reg(regs, work_vec2, base + 5);
|
||||
ra_class_add_reg(regs, work_vec1, base + 6);
|
||||
ra_class_add_reg(regs, work_vec1, base + 7);
|
||||
ra_class_add_reg(regs, work_vec1, base + 8);
|
||||
ra_class_add_reg(regs, work_vec1, base + 9);
|
||||
|
||||
for (unsigned i = 0; i < 10; ++i) {
|
||||
for (unsigned j = 0; j < 10; ++j) {
|
||||
unsigned mask1 = reg_type_to_mask[i];
|
||||
unsigned mask2 = reg_type_to_mask[j];
|
||||
|
||||
if (mask1 & mask2)
|
||||
ra_add_reg_conflict(regs, base + i, base + j);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* We're done setting up */
|
||||
ra_set_finalize(regs, NULL);
|
||||
|
|
@ -122,9 +265,12 @@ allocate_registers(compiler_context *ctx)
|
|||
mir_foreach_instr_in_block(block, ins) {
|
||||
if (ins->compact_branch) continue;
|
||||
|
||||
ins->ssa_args.src0 = find_or_allocate_temp(ctx, ins->ssa_args.src0);
|
||||
ins->ssa_args.src1 = find_or_allocate_temp(ctx, ins->ssa_args.src1);
|
||||
ins->ssa_args.dest = find_or_allocate_temp(ctx, ins->ssa_args.dest);
|
||||
ins->ssa_args.src0 = find_or_allocate_temp(ctx, ins->ssa_args.src0);
|
||||
|
||||
if (!ins->ssa_args.inline_constant)
|
||||
ins->ssa_args.src1 = find_or_allocate_temp(ctx, ins->ssa_args.src1);
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
|
|
@ -137,23 +283,42 @@ allocate_registers(compiler_context *ctx)
|
|||
int nodes = ctx->temp_count;
|
||||
struct ra_graph *g = ra_alloc_interference_graph(regs, nodes);
|
||||
|
||||
/* Set everything to the work register class, unless it has somewhere
|
||||
* special to go */
|
||||
/* Determine minimum size needed to hold values, to indirectly
|
||||
* determine class */
|
||||
|
||||
unsigned *found_class = calloc(sizeof(unsigned), ctx->temp_count);
|
||||
|
||||
mir_foreach_block(ctx, block) {
|
||||
mir_foreach_instr_in_block(block, ins) {
|
||||
if (ins->compact_branch) continue;
|
||||
|
||||
if (ins->ssa_args.dest < 0) continue;
|
||||
|
||||
if (ins->ssa_args.dest >= SSA_FIXED_MINIMUM) continue;
|
||||
|
||||
int class = primary_class;
|
||||
/* Default to vec4 if we're not sure */
|
||||
|
||||
ra_set_node_class(g, ins->ssa_args.dest, class);
|
||||
int mask = 0xF;
|
||||
|
||||
if (ins->type == TAG_ALU_4)
|
||||
mask = squeeze_writemask(ins->alu.mask);
|
||||
else if (ins->type == TAG_LOAD_STORE_4)
|
||||
mask = ins->load_store.mask;
|
||||
|
||||
int class = util_logbase2(mask) + 1;
|
||||
|
||||
/* Use the largest class if there's ambiguity, this
|
||||
* handles partial writes */
|
||||
|
||||
int dest = ins->ssa_args.dest;
|
||||
found_class[dest] = MAX2(found_class[dest], class);
|
||||
}
|
||||
}
|
||||
|
||||
for (unsigned i = 0; i < ctx->temp_count; ++i) {
|
||||
unsigned class = found_class[i];
|
||||
if (!class) continue;
|
||||
ra_set_node_class(g, i, classes[class - 1]);
|
||||
}
|
||||
|
||||
/* Determine liveness */
|
||||
|
||||
int *live_start = malloc(nodes * sizeof(int));
|
||||
|
|
@ -243,7 +408,85 @@ allocate_registers(compiler_context *ctx)
|
|||
|
||||
/* Once registers have been decided via register allocation
|
||||
* (allocate_registers), we need to rewrite the MIR to use registers instead of
|
||||
* SSA */
|
||||
* indices */
|
||||
|
||||
static void
|
||||
install_registers_instr(
|
||||
compiler_context *ctx,
|
||||
struct ra_graph *g,
|
||||
midgard_instruction *ins)
|
||||
{
|
||||
ssa_args args = ins->ssa_args;
|
||||
|
||||
switch (ins->type) {
|
||||
case TAG_ALU_4: {
|
||||
int adjusted_src = args.inline_constant ? -1 : args.src1;
|
||||
struct phys_reg src1 = index_to_reg(ctx, g, args.src0);
|
||||
struct phys_reg src2 = index_to_reg(ctx, g, adjusted_src);
|
||||
struct phys_reg dest = index_to_reg(ctx, g, args.dest);
|
||||
|
||||
unsigned mask = squeeze_writemask(ins->alu.mask);
|
||||
ins->alu.mask = expand_writemask(compose_writemask(mask, dest));
|
||||
|
||||
/* Adjust the dest mask if necessary. Mostly this is a no-op
|
||||
* but it matters for dot products */
|
||||
dest.mask = effective_writemask(&ins->alu);
|
||||
|
||||
midgard_vector_alu_src mod1 =
|
||||
vector_alu_from_unsigned(ins->alu.src1);
|
||||
mod1.swizzle = compose_swizzle(mod1.swizzle, mask, src1, dest);
|
||||
ins->alu.src1 = vector_alu_srco_unsigned(mod1);
|
||||
|
||||
ins->registers.src1_reg = src1.reg;
|
||||
|
||||
ins->registers.src2_imm = args.inline_constant;
|
||||
|
||||
if (args.inline_constant) {
|
||||
/* Encode inline 16-bit constant as a vector by default */
|
||||
|
||||
ins->registers.src2_reg = ins->inline_constant >> 11;
|
||||
|
||||
int lower_11 = ins->inline_constant & ((1 << 12) - 1);
|
||||
|
||||
uint16_t imm = ((lower_11 >> 8) & 0x7) | ((lower_11 & 0xFF) << 3);
|
||||
ins->alu.src2 = imm << 2;
|
||||
} else {
|
||||
midgard_vector_alu_src mod2 =
|
||||
vector_alu_from_unsigned(ins->alu.src2);
|
||||
mod2.swizzle = compose_swizzle(mod2.swizzle, mask, src2, dest);
|
||||
ins->alu.src2 = vector_alu_srco_unsigned(mod2);
|
||||
|
||||
ins->registers.src2_reg = src2.reg;
|
||||
}
|
||||
|
||||
ins->registers.out_reg = dest.reg;
|
||||
break;
|
||||
}
|
||||
|
||||
case TAG_LOAD_STORE_4: {
|
||||
if (OP_IS_STORE(ins->load_store.op)) {
|
||||
/* TODO: use ssa_args for st_vary */
|
||||
ins->load_store.reg = 0;
|
||||
} else {
|
||||
struct phys_reg src = index_to_reg(ctx, g, args.dest);
|
||||
|
||||
ins->load_store.reg = src.reg;
|
||||
|
||||
ins->load_store.swizzle = compose_swizzle(
|
||||
ins->load_store.swizzle, 0xF,
|
||||
default_phys_reg(0), src);
|
||||
|
||||
ins->load_store.mask = compose_writemask(
|
||||
ins->load_store.mask, src);
|
||||
}
|
||||
|
||||
break;
|
||||
}
|
||||
|
||||
default:
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
void
|
||||
install_registers(compiler_context *ctx, struct ra_graph *g)
|
||||
|
|
@ -251,49 +494,7 @@ install_registers(compiler_context *ctx, struct ra_graph *g)
|
|||
mir_foreach_block(ctx, block) {
|
||||
mir_foreach_instr_in_block(block, ins) {
|
||||
if (ins->compact_branch) continue;
|
||||
|
||||
ssa_args args = ins->ssa_args;
|
||||
|
||||
switch (ins->type) {
|
||||
case TAG_ALU_4:
|
||||
ins->registers.src1_reg = dealias_register(ctx, g, args.src0, ctx->temp_count);
|
||||
|
||||
ins->registers.src2_imm = args.inline_constant;
|
||||
|
||||
if (args.inline_constant) {
|
||||
/* Encode inline 16-bit constant as a vector by default */
|
||||
|
||||
ins->registers.src2_reg = ins->inline_constant >> 11;
|
||||
|
||||
int lower_11 = ins->inline_constant & ((1 << 12) - 1);
|
||||
|
||||
uint16_t imm = ((lower_11 >> 8) & 0x7) | ((lower_11 & 0xFF) << 3);
|
||||
ins->alu.src2 = imm << 2;
|
||||
} else {
|
||||
ins->registers.src2_reg = dealias_register(ctx, g, args.src1, ctx->temp_count);
|
||||
}
|
||||
|
||||
ins->registers.out_reg = dealias_register(ctx, g, args.dest, ctx->temp_count);
|
||||
|
||||
break;
|
||||
|
||||
case TAG_LOAD_STORE_4: {
|
||||
if (OP_IS_STORE_VARY(ins->load_store.op)) {
|
||||
/* TODO: use ssa_args for st_vary */
|
||||
ins->load_store.reg = 0;
|
||||
} else {
|
||||
bool has_dest = args.dest >= 0;
|
||||
int ssa_arg = has_dest ? args.dest : args.src0;
|
||||
|
||||
ins->load_store.reg = dealias_register(ctx, g, ssa_arg, ctx->temp_count);
|
||||
}
|
||||
|
||||
break;
|
||||
}
|
||||
|
||||
default:
|
||||
break;
|
||||
}
|
||||
install_registers_instr(ctx, g, ins);
|
||||
}
|
||||
}
|
||||
|
||||
|
|
|
|||
Loading…
Add table
Reference in a new issue