r600g/compute: Use gallium util functions for double lists

Reviewed-by: Tom Stellard <thomas.stellard@amd.com>
This commit is contained in:
Bruno Jiménez 2014-06-18 17:01:59 +02:00 committed by Tom Stellard
parent 257d697fb9
commit 2d2af4cd2c
2 changed files with 45 additions and 110 deletions

View file

@ -57,6 +57,12 @@ struct compute_memory_pool* compute_memory_pool_new(
COMPUTE_DBG(rscreen, "* compute_memory_pool_new()\n");
pool->screen = rscreen;
pool->item_list = (struct list_head *)
CALLOC(sizeof(struct list_head), 1);
pool->unallocated_list = (struct list_head *)
CALLOC(sizeof(struct list_head), 1);
list_inithead(pool->item_list);
list_inithead(pool->unallocated_list);
return pool;
}
@ -107,7 +113,7 @@ int64_t compute_memory_prealloc_chunk(
COMPUTE_DBG(pool->screen, "* compute_memory_prealloc_chunk() size_in_dw = %ld\n",
size_in_dw);
for (item = pool->item_list; item; item = item->next) {
LIST_FOR_EACH_ENTRY(item, pool->item_list, link) {
if (last_end + size_in_dw <= item->start_in_dw) {
return last_end;
}
@ -125,31 +131,37 @@ int64_t compute_memory_prealloc_chunk(
/**
* Search for the chunk where we can link our new chunk after it.
*/
struct compute_memory_item* compute_memory_postalloc_chunk(
struct list_head *compute_memory_postalloc_chunk(
struct compute_memory_pool* pool,
int64_t start_in_dw)
{
struct compute_memory_item* item;
struct compute_memory_item *item;
struct compute_memory_item *next;
struct list_head *next_link;
COMPUTE_DBG(pool->screen, "* compute_memory_postalloc_chunck() start_in_dw = %ld\n",
start_in_dw);
/* Check if we can insert it in the front of the list */
if (pool->item_list && pool->item_list->start_in_dw > start_in_dw) {
return NULL;
item = LIST_ENTRY(struct compute_memory_item, pool->item_list->next, link);
if (LIST_IS_EMPTY(pool->item_list) || item->start_in_dw > start_in_dw) {
return pool->item_list;
}
for (item = pool->item_list; item; item = item->next) {
if (item->next) {
LIST_FOR_EACH_ENTRY(item, pool->item_list, link) {
next_link = item->link.next;
if (next_link != pool->item_list) {
next = container_of(next_link, item, link);
if (item->start_in_dw < start_in_dw
&& item->next->start_in_dw > start_in_dw) {
return item;
&& next->start_in_dw > start_in_dw) {
return &item->link;
}
}
else {
/* end of chain */
assert(item->start_in_dw < start_in_dw);
return item;
return &item->link;
}
}
@ -212,7 +224,6 @@ void compute_memory_shadow(struct compute_memory_pool* pool,
chunk.id = 0;
chunk.start_in_dw = 0;
chunk.size_in_dw = pool->size_in_dw;
chunk.prev = chunk.next = NULL;
compute_memory_transfer(pool, pipe, device_to_host, &chunk,
pool->shadow, 0, pool->size_in_dw*4);
}
@ -233,22 +244,20 @@ int compute_memory_finalize_pending(struct compute_memory_pool* pool,
COMPUTE_DBG(pool->screen, "* compute_memory_finalize_pending()\n");
for (item = pool->item_list; item; item = item->next) {
LIST_FOR_EACH_ENTRY(item, pool->item_list, link) {
COMPUTE_DBG(pool->screen, " + list: offset = %i id = %i size = %i "
"(%i bytes)\n",item->start_in_dw, item->id,
item->size_in_dw, item->size_in_dw * 4);
}
/* Calculate the total allocated size */
for (item = pool->item_list; item; item = next) {
next = item->next;
LIST_FOR_EACH_ENTRY(item, pool->item_list, link) {
allocated += align(item->size_in_dw, ITEM_ALIGNMENT);
}
/* Calculate the total unallocated size of the items that
* will be promoted to the pool */
for (item = pool->unallocated_list; item; item = next) {
next = item->next;
LIST_FOR_EACH_ENTRY(item, pool->unallocated_list, link) {
if (item->status & ITEM_FOR_PROMOTING)
unallocated += align(item->size_in_dw, ITEM_ALIGNMENT);
}
@ -278,9 +287,7 @@ int compute_memory_finalize_pending(struct compute_memory_pool* pool,
/* Loop through all the unallocated items, check if they are marked
* for promoting, allocate space for them and add them to the item_list. */
for (item = pool->unallocated_list; item; item = next) {
next = item->next;
LIST_FOR_EACH_ENTRY_SAFE(item, next, pool->unallocated_list, link) {
if (item->status & ITEM_FOR_PROMOTING) {
err = compute_memory_promote_item(pool, item, pipe, allocated);
item->status ^= ITEM_FOR_PROMOTING;
@ -305,6 +312,7 @@ int compute_memory_promote_item(struct compute_memory_pool *pool,
struct pipe_resource *src = (struct pipe_resource *)item->real_buffer;
struct pipe_box box;
struct list_head *pos;
int64_t start_in_dw;
int err = 0;
@ -334,40 +342,12 @@ int compute_memory_promote_item(struct compute_memory_pool *pool,
item->size_in_dw, item->size_in_dw * 4);
/* Remove the item from the unallocated list */
if (item->prev == NULL)
pool->unallocated_list = item->next;
else
item->prev->next = item->next;
if (item->next != NULL)
item->next->prev = item->prev;
list_del(&item->link);
/* Add it back to the item_list */
pos = compute_memory_postalloc_chunk(pool, start_in_dw);
list_add(&item->link, pos);
item->start_in_dw = start_in_dw;
item->next = NULL;
item->prev = NULL;
if (pool->item_list) {
struct compute_memory_item *pos;
pos = compute_memory_postalloc_chunk(pool, start_in_dw);
if (pos) {
item->prev = pos;
item->next = pos->next;
pos->next = item;
if (item->next) {
item->next->prev = item;
}
} else {
/* Add item to the front of the list */
item->next = pool->item_list;
item->prev = pool->item_list->prev;
pool->item_list->prev = item;
pool->item_list = item;
}
}
else {
pool->item_list = item;
}
u_box_1d(0, item->size_in_dw * 4, &box);
@ -396,26 +376,10 @@ void compute_memory_demote_item(struct compute_memory_pool *pool,
struct pipe_box box;
/* First, we remove the item from the item_list */
if (item->prev == NULL)
pool->item_list = item->next;
else
item->prev->next = item->next;
list_del(&item->link);
if (item->next != NULL)
item->next->prev = item->prev;
/* Now we add it to the beginning of the unallocated list
* NOTE: we could also add it to the end, but this is easier */
item->next = NULL;
item->prev = NULL;
if (pool->unallocated_list) {
item->next = pool->unallocated_list;
item->next->prev = item;
pool->unallocated_list = item;
}
else
pool->unallocated_list = item;
/* Now we add it to the unallocated list */
list_addtail(&item->link, pool->unallocated_list);
/* We check if the intermediate buffer exists, and if it
* doesn't, we create it again */
@ -446,20 +410,10 @@ void compute_memory_free(struct compute_memory_pool* pool, int64_t id)
COMPUTE_DBG(pool->screen, "* compute_memory_free() id + %ld \n", id);
for (item = pool->item_list; item; item = next) {
next = item->next;
LIST_FOR_EACH_ENTRY_SAFE(item, next, pool->item_list, link) {
if (item->id == id) {
if (item->prev) {
item->prev->next = item->next;
}
else {
pool->item_list = item->next;
}
if (item->next) {
item->next->prev = item->prev;
}
list_del(&item->link);
if (item->real_buffer) {
res = (struct pipe_resource *)item->real_buffer;
@ -473,20 +427,10 @@ void compute_memory_free(struct compute_memory_pool* pool, int64_t id)
}
}
for (item = pool->unallocated_list; item; item = next) {
next = item->next;
LIST_FOR_EACH_ENTRY_SAFE(item, next, pool->unallocated_list, link) {
if (item->id == id) {
if (item->prev) {
item->prev->next = item->next;
}
else {
pool->unallocated_list = item->next;
}
if (item->next) {
item->next->prev = item->prev;
}
list_del(&item->link);
if (item->real_buffer) {
res = (struct pipe_resource *)item->real_buffer;
@ -513,7 +457,7 @@ struct compute_memory_item* compute_memory_alloc(
struct compute_memory_pool* pool,
int64_t size_in_dw)
{
struct compute_memory_item *new_item = NULL, *last_item = NULL;
struct compute_memory_item *new_item = NULL;
COMPUTE_DBG(pool->screen, "* compute_memory_alloc() size_in_dw = %ld (%ld bytes)\n",
size_in_dw, 4 * size_in_dw);
@ -530,16 +474,7 @@ struct compute_memory_item* compute_memory_alloc(
new_item->real_buffer = (struct r600_resource*)r600_compute_buffer_alloc_vram(
pool->screen, size_in_dw * 4);
if (pool->unallocated_list) {
for (last_item = pool->unallocated_list; last_item->next;
last_item = last_item->next);
last_item->next = new_item;
new_item->prev = last_item;
}
else {
pool->unallocated_list = new_item;
}
list_addtail(&new_item->link, pool->unallocated_list);
COMPUTE_DBG(pool->screen, " + Adding item %p id = %u size = %u (%u bytes)\n",
new_item, new_item->id, new_item->size_in_dw,

View file

@ -47,8 +47,7 @@ struct compute_memory_item
struct compute_memory_pool* pool;
struct compute_memory_item* prev;
struct compute_memory_item* next;
struct list_head link;
};
struct compute_memory_pool
@ -57,11 +56,12 @@ struct compute_memory_pool
int64_t size_in_dw; ///Size of the pool in dwords
struct r600_resource *bo; ///The pool buffer object resource
struct compute_memory_item* item_list; ///Allocated memory chunks in the buffer,they must be ordered by "start_in_dw"
struct compute_memory_item* unallocated_list; ///Unallocated memory chunks
struct r600_screen *screen;
uint32_t *shadow; ///host copy of the pool, used for defragmentation
struct list_head *item_list; ///Allocated memory chunks in the buffer,they must be ordered by "start_in_dw"
struct list_head *unallocated_list; ///Unallocated memory chunks
};
@ -75,7 +75,7 @@ void compute_memory_pool_delete(struct compute_memory_pool* pool); ///Frees all
int64_t compute_memory_prealloc_chunk(struct compute_memory_pool* pool, int64_t size_in_dw); ///searches for an empty space in the pool, return with the pointer to the allocatable space in the pool, returns -1 on failure
struct compute_memory_item* compute_memory_postalloc_chunk(struct compute_memory_pool* pool, int64_t start_in_dw); ///search for the chunk where we can link our new chunk after it
struct list_head *compute_memory_postalloc_chunk(struct compute_memory_pool* pool, int64_t start_in_dw); ///search for the chunk where we can link our new chunk after it
int compute_memory_grow_pool(struct compute_memory_pool* pool, struct pipe_context * pipe,
int new_size_in_dw);