mirror of
https://gitlab.freedesktop.org/mesa/mesa.git
synced 2025-12-27 14:50:10 +01:00
aco/jump_threading: remove branch sequence optimization
This optimization gets applied during postRA optimization, now. No fossil changes. Part-of: <https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/32330>
This commit is contained in:
parent
fcd94a8ca7
commit
28ab7f0168
1 changed files with 2 additions and 368 deletions
|
|
@ -185,49 +185,6 @@ is_simple_copy(Instruction* instr)
|
|||
return instr->opcode == aco_opcode::p_parallelcopy && instr->definitions.size() == 1;
|
||||
}
|
||||
|
||||
bool
|
||||
instr_writes_exec(Instruction* instr)
|
||||
{
|
||||
for (Definition& def : instr->definitions)
|
||||
if (def.physReg() == exec || def.physReg() == exec_hi)
|
||||
return true;
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
template <typename T, typename U>
|
||||
bool
|
||||
regs_intersect(const T& a, const U& b)
|
||||
{
|
||||
const unsigned a_lo = a.physReg();
|
||||
const unsigned a_hi = a_lo + a.size();
|
||||
const unsigned b_lo = b.physReg();
|
||||
const unsigned b_hi = b_lo + b.size();
|
||||
|
||||
return a_hi > b_lo && b_hi > a_lo;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
bool
|
||||
instr_accesses(Instruction* instr, const T& a, bool ignore_reads)
|
||||
{
|
||||
if (!ignore_reads) {
|
||||
for (const Operand& op : instr->operands)
|
||||
if (regs_intersect(a, op))
|
||||
return true;
|
||||
}
|
||||
|
||||
for (const Definition& def : instr->definitions)
|
||||
if (regs_intersect(a, def))
|
||||
return true;
|
||||
|
||||
if (instr->isPseudo() && instr->pseudo().needs_scratch_reg &&
|
||||
regs_intersect(a, Definition(instr->pseudo().scratch_sgpr, s1)))
|
||||
return true;
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
void
|
||||
try_merge_break_with_continue(jump_threading_ctx& ctx, Block* block)
|
||||
{
|
||||
|
|
@ -348,289 +305,6 @@ try_merge_break_with_continue(jump_threading_ctx& ctx, Block* block)
|
|||
merge->instructions[0].reset(wr_exec);
|
||||
}
|
||||
|
||||
bool
|
||||
try_insert_saveexec_out_of_loop(jump_threading_ctx& ctx, Block* block, Instruction* saveexec,
|
||||
unsigned saveexec_pos)
|
||||
{
|
||||
/* This pattern can be created by try_optimize_branching_sequence:
|
||||
* BB1: // loop-header
|
||||
* ... // nothing that clobbers s[0:1] or writes exec
|
||||
* s[0:1] = p_parallelcopy exec // we will move this
|
||||
* exec = v_cmpx_...
|
||||
* p_branch_z exec BB3, BB2
|
||||
* BB2:
|
||||
* ...
|
||||
* p_branch BB3
|
||||
* BB3:
|
||||
* s[0:1], scc, exec = s_andn2_wrexec ... // exec and s[0:1] contain the same mask
|
||||
* ... // nothing that clobbers s[0:1] or writes exec
|
||||
* p_branch_nz scc BB1, BB4
|
||||
* BB4:
|
||||
* ...
|
||||
*
|
||||
* Instead of the s_andn2_wrexec there could also be a p_parallelcopy from s[0:1] to exec.
|
||||
* Either way, we know that that exec copy in the loop header is only needed in the first
|
||||
* iteration, so that it can be inserted in the loop preheader.
|
||||
*/
|
||||
if (block->linear_preds.size() != 2)
|
||||
return false;
|
||||
|
||||
Block* preheader = &ctx.program->blocks[block->linear_preds[0]];
|
||||
Block* cont = &ctx.program->blocks[block->linear_preds[1]];
|
||||
assert(preheader->kind & block_kind_loop_preheader);
|
||||
|
||||
const RegClass lm = ctx.program->lane_mask;
|
||||
const aco_opcode andn2_wrexec =
|
||||
lm == s2 ? aco_opcode::s_andn2_wrexec_b64 : aco_opcode::s_andn2_wrexec_b32;
|
||||
|
||||
const Definition& saved_exec = saveexec->definitions[0];
|
||||
|
||||
/* Check if exec is written, or the copy's dst overwritten in the loop header. */
|
||||
for (unsigned i = 0; i < saveexec_pos; i++) {
|
||||
Instruction* instr = block->instructions[i].get();
|
||||
|
||||
if (instr->opcode == aco_opcode::p_linear_phi)
|
||||
continue;
|
||||
|
||||
if (instr_accesses(instr, saved_exec, false) || instr_writes_exec(instr))
|
||||
return false;
|
||||
}
|
||||
|
||||
/* The register(s) must already contain the same value as exec in the continue block. */
|
||||
for (int i = cont->instructions.size() - 1;; i--) {
|
||||
if (i == -1)
|
||||
return false;
|
||||
Instruction* instr = cont->instructions[i].get();
|
||||
if (is_simple_copy(instr) && instr->definitions[0].physReg() == exec &&
|
||||
instr->definitions[0].regClass() == lm &&
|
||||
instr->operands[0].physReg() == saved_exec.physReg()) {
|
||||
break;
|
||||
}
|
||||
|
||||
if (instr->opcode == andn2_wrexec &&
|
||||
instr->definitions[0].physReg() == saved_exec.physReg()) {
|
||||
break;
|
||||
}
|
||||
|
||||
if (instr_accesses(instr, saved_exec, true) || instr_writes_exec(instr))
|
||||
return false;
|
||||
}
|
||||
|
||||
/* Insert outside of the loop. */
|
||||
preheader->instructions.emplace(preheader->instructions.end() - 1, saveexec);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
void
|
||||
try_optimize_branching_sequence(jump_threading_ctx& ctx, Block& block, const int exec_val_idx,
|
||||
const int exec_copy_idx)
|
||||
{
|
||||
/* Try to optimize the branching sequence at the end of a block.
|
||||
*
|
||||
* We are looking for blocks that look like this:
|
||||
*
|
||||
* BB:
|
||||
* ... instructions ...
|
||||
* s[N:M] = <exec_val instruction>
|
||||
* ... other instructions that don't depend on exec ...
|
||||
* p_logical_end
|
||||
* exec = <exec_copy instruction> s[N:M]
|
||||
* p_cbranch exec
|
||||
*
|
||||
* The main motivation is to eliminate exec_copy.
|
||||
* Depending on the context, we try to do the following:
|
||||
*
|
||||
* 1. Reassign exec_val to write exec directly
|
||||
* 2. If possible, eliminate exec_copy
|
||||
* 3. When exec_copy also saves the old exec mask, insert a
|
||||
* new copy instruction before exec_val
|
||||
* 4. Reassign any instruction that used s[N:M] to use exec
|
||||
*
|
||||
* This is beneficial for the following reasons:
|
||||
*
|
||||
* - Fewer instructions in the block when exec_copy can be eliminated
|
||||
* - As a result, when exec_val is VOPC this also improves the stalls
|
||||
* due to SALU waiting for VALU. This works best when we can also
|
||||
* remove the branching instruction, in which case the stall
|
||||
* is entirely eliminated.
|
||||
* - When exec_copy can't be removed, the reassignment may still be
|
||||
* very slightly beneficial to latency.
|
||||
*/
|
||||
|
||||
aco_ptr<Instruction>& exec_val = block.instructions[exec_val_idx];
|
||||
aco_ptr<Instruction>& exec_copy = block.instructions[exec_copy_idx];
|
||||
|
||||
const aco_opcode and_saveexec = ctx.program->lane_mask == s2 ? aco_opcode::s_and_saveexec_b64
|
||||
: aco_opcode::s_and_saveexec_b32;
|
||||
|
||||
const aco_opcode s_and =
|
||||
ctx.program->lane_mask == s2 ? aco_opcode::s_and_b64 : aco_opcode::s_and_b32;
|
||||
|
||||
if (exec_copy->opcode != and_saveexec && exec_copy->opcode != aco_opcode::p_parallelcopy &&
|
||||
(exec_copy->opcode != s_and || exec_copy->operands[1].physReg() != exec))
|
||||
return;
|
||||
|
||||
/* The SCC def of s_and/s_and_saveexec must be unused. */
|
||||
if (exec_copy->opcode != aco_opcode::p_parallelcopy && !exec_copy->definitions[1].isKill())
|
||||
return;
|
||||
|
||||
/* Only allow SALU with multiple definitions. */
|
||||
if (!exec_val->isSALU() && exec_val->definitions.size() > 1)
|
||||
return;
|
||||
|
||||
const bool vcmpx_exec_only = ctx.program->gfx_level >= GFX10;
|
||||
|
||||
/* Check if a suitable v_cmpx opcode exists. */
|
||||
const aco_opcode v_cmpx_op =
|
||||
exec_val->isVOPC() ? get_vcmpx(exec_val->opcode) : aco_opcode::num_opcodes;
|
||||
const bool vopc = v_cmpx_op != aco_opcode::num_opcodes;
|
||||
|
||||
/* V_CMPX+DPP returns 0 with reads from disabled lanes, unlike V_CMP+DPP (RDNA3 ISA doc, 7.7) */
|
||||
if (vopc && exec_val->isDPP())
|
||||
return;
|
||||
|
||||
/* If s_and_saveexec is used, we'll need to insert a new instruction to save the old exec. */
|
||||
bool save_original_exec = exec_copy->opcode == and_saveexec;
|
||||
|
||||
const Definition exec_wr_def = exec_val->definitions[0];
|
||||
const Definition exec_copy_def = exec_copy->definitions[0];
|
||||
|
||||
/* Position where the original exec mask copy should be inserted. */
|
||||
const int save_original_exec_idx = exec_val_idx;
|
||||
/* The copy can be removed when it kills its operand.
|
||||
* v_cmpx also writes the original destination pre GFX10.
|
||||
*/
|
||||
const bool can_remove_copy = exec_copy->operands[0].isKill() || (vopc && !vcmpx_exec_only);
|
||||
|
||||
/* Always allow reassigning when the value is written by (usable) VOPC.
|
||||
* Note, VOPC implicitly contains "& exec" because it yields zero on inactive lanes.
|
||||
* Additionally, when value is copied as-is, also allow SALU and parallelcopies.
|
||||
*/
|
||||
const bool can_reassign =
|
||||
vopc || (exec_copy->opcode == aco_opcode::p_parallelcopy &&
|
||||
(exec_val->isSALU() || exec_val->opcode == aco_opcode::p_parallelcopy ||
|
||||
exec_val->opcode == aco_opcode::p_create_vector));
|
||||
|
||||
/* The reassignment is not worth it when both the original exec needs to be copied
|
||||
* and the new exec copy can't be removed. In this case we'd end up with more instructions.
|
||||
*/
|
||||
if (!can_reassign || (save_original_exec && !can_remove_copy))
|
||||
return;
|
||||
|
||||
/* When exec_val and exec_copy are non-adjacent, check whether there are any
|
||||
* instructions inbetween (besides p_logical_end) which may inhibit the optimization.
|
||||
*/
|
||||
if (save_original_exec) {
|
||||
/* We insert the exec copy before exec_val, so exec_val can't use those registers. */
|
||||
for (const Operand& op : exec_val->operands)
|
||||
if (regs_intersect(exec_copy_def, op))
|
||||
return;
|
||||
/* We would write over the saved exec value in this case. */
|
||||
if (((vopc && !vcmpx_exec_only) || !can_remove_copy) &&
|
||||
regs_intersect(exec_copy_def, exec_wr_def))
|
||||
return;
|
||||
|
||||
for (int idx = exec_val_idx + 1; idx < exec_copy_idx; ++idx) {
|
||||
Instruction* instr = block.instructions[idx].get();
|
||||
|
||||
/* Check if the instruction uses the exec_copy_def register, in which case we can't
|
||||
* optimize. */
|
||||
if (instr_accesses(instr, exec_copy_def, false))
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
if (vopc) {
|
||||
/* Add one extra definition for exec and copy the VOP3-specific fields if present. */
|
||||
if (!vcmpx_exec_only) {
|
||||
if (exec_val->isSDWA()) {
|
||||
/* This might work but it needs testing and more code to copy the instruction. */
|
||||
return;
|
||||
} else {
|
||||
aco_ptr<Instruction> tmp = std::move(exec_val);
|
||||
exec_val.reset(create_instruction(tmp->opcode, tmp->format, tmp->operands.size(),
|
||||
tmp->definitions.size() + 1));
|
||||
std::copy(tmp->operands.cbegin(), tmp->operands.cend(), exec_val->operands.begin());
|
||||
std::copy(tmp->definitions.cbegin(), tmp->definitions.cend(),
|
||||
exec_val->definitions.begin());
|
||||
|
||||
VALU_instruction& src = tmp->valu();
|
||||
VALU_instruction& dst = exec_val->valu();
|
||||
dst.opsel = src.opsel;
|
||||
dst.omod = src.omod;
|
||||
dst.clamp = src.clamp;
|
||||
dst.neg = src.neg;
|
||||
dst.abs = src.abs;
|
||||
}
|
||||
}
|
||||
|
||||
/* Set v_cmpx opcode. */
|
||||
exec_val->opcode = v_cmpx_op;
|
||||
|
||||
*exec_val->definitions.rbegin() = Definition(exec, ctx.program->lane_mask);
|
||||
|
||||
/* Change instruction from VOP3 to plain VOPC when possible. */
|
||||
if (vcmpx_exec_only && !exec_val->usesModifiers() &&
|
||||
(exec_val->operands.size() < 2 || exec_val->operands[1].isOfType(RegType::vgpr)))
|
||||
exec_val->format = Format::VOPC;
|
||||
} else {
|
||||
/* Reassign the instruction to write exec directly. */
|
||||
exec_val->definitions[0] = Definition(exec, ctx.program->lane_mask);
|
||||
}
|
||||
|
||||
/* If there are other instructions (besides p_logical_end) between
|
||||
* writing the value and copying it to exec, reassign uses
|
||||
* of the old definition.
|
||||
*/
|
||||
for (int idx = exec_val_idx + 1; idx < exec_copy_idx; ++idx) {
|
||||
aco_ptr<Instruction>& instr = block.instructions[idx];
|
||||
for (Operand& op : instr->operands) {
|
||||
if (op.physReg() == exec_wr_def.physReg())
|
||||
op = Operand(exec, op.regClass());
|
||||
if (exec_wr_def.size() == 2 && op.physReg() == exec_wr_def.physReg().advance(4))
|
||||
op = Operand(exec_hi, op.regClass());
|
||||
}
|
||||
}
|
||||
|
||||
if (can_remove_copy) {
|
||||
/* Remove the copy. */
|
||||
exec_copy.reset();
|
||||
} else {
|
||||
/* Reassign the copy to write the register of the original value. */
|
||||
exec_copy.reset(create_instruction(aco_opcode::p_parallelcopy, Format::PSEUDO, 1, 1));
|
||||
exec_copy->definitions[0] = exec_wr_def;
|
||||
exec_copy->operands[0] = Operand(exec, ctx.program->lane_mask);
|
||||
}
|
||||
|
||||
bool has_nonzero_op =
|
||||
std::any_of(exec_val->operands.begin(), exec_val->operands.end(),
|
||||
[](const Operand& op) -> bool { return op.isConstant() && op.constantValue(); });
|
||||
if (exec_val->isPseudo() && has_nonzero_op) {
|
||||
/* Remove the branch instruction when exec is constant non-zero. */
|
||||
aco_ptr<Instruction>& branch = block.instructions.back();
|
||||
if (branch->opcode == aco_opcode::p_cbranch_z && branch->operands[0].physReg() == exec)
|
||||
block.instructions.back().reset();
|
||||
}
|
||||
|
||||
if (save_original_exec) {
|
||||
/* Insert a new instruction that saves the original exec before it is overwritten.
|
||||
* Do this last, because inserting in the instructions vector may invalidate the exec_val
|
||||
* reference.
|
||||
*/
|
||||
|
||||
Instruction* copy = create_instruction(aco_opcode::p_parallelcopy, Format::PSEUDO, 1, 1);
|
||||
copy->definitions[0] = exec_copy_def;
|
||||
copy->operands[0] = Operand(exec, ctx.program->lane_mask);
|
||||
if (block.kind & block_kind_loop_header) {
|
||||
if (try_insert_saveexec_out_of_loop(ctx, &block, copy, save_original_exec_idx))
|
||||
return;
|
||||
}
|
||||
const auto it = std::next(block.instructions.begin(), save_original_exec_idx);
|
||||
block.instructions.emplace(it, copy);
|
||||
}
|
||||
}
|
||||
|
||||
void
|
||||
eliminate_useless_exec_writes_in_block(jump_threading_ctx& ctx, Block& block)
|
||||
{
|
||||
|
|
@ -647,13 +321,6 @@ eliminate_useless_exec_writes_in_block(jump_threading_ctx& ctx, Block& block)
|
|||
[&ctx](int succ_idx) { return ctx.blocks_incoming_exec_used[succ_idx]; });
|
||||
}
|
||||
|
||||
/* Collect information about the branching sequence. */
|
||||
|
||||
bool branch_exec_val_found = false;
|
||||
int branch_exec_val_idx = -1;
|
||||
int branch_exec_copy_idx = -1;
|
||||
unsigned branch_exec_tempid = 0;
|
||||
|
||||
/* Go through all instructions and eliminate useless exec writes. */
|
||||
|
||||
for (int i = block.instructions.size() - 1; i >= 0; --i) {
|
||||
|
|
@ -666,7 +333,7 @@ eliminate_useless_exec_writes_in_block(jump_threading_ctx& ctx, Block& block)
|
|||
|
||||
/* See if the current instruction needs or writes exec. */
|
||||
bool needs_exec = needs_exec_mask(instr.get());
|
||||
bool writes_exec = instr_writes_exec(instr.get());
|
||||
bool writes_exec = instr->writes_exec();
|
||||
|
||||
/* See if we found an unused exec write. */
|
||||
if (writes_exec && !exec_write_used) {
|
||||
|
|
@ -684,35 +351,8 @@ eliminate_useless_exec_writes_in_block(jump_threading_ctx& ctx, Block& block)
|
|||
}
|
||||
|
||||
/* For a newly encountered exec write, clear the used flag. */
|
||||
if (writes_exec) {
|
||||
if (instr->operands.size() && !branch_exec_val_found) {
|
||||
/* We are in a branch that jumps according to exec.
|
||||
* We just found the instruction that copies to exec before the branch.
|
||||
*/
|
||||
assert(branch_exec_copy_idx == -1);
|
||||
branch_exec_copy_idx = i;
|
||||
branch_exec_tempid = instr->operands[0].tempId();
|
||||
branch_exec_val_found = true;
|
||||
} else if (branch_exec_val_idx == -1) {
|
||||
/* The current instruction overwrites exec before branch_exec_val_idx was
|
||||
* found, therefore we can't optimize the branching sequence.
|
||||
*/
|
||||
branch_exec_copy_idx = -1;
|
||||
branch_exec_tempid = 0;
|
||||
}
|
||||
|
||||
if (writes_exec)
|
||||
exec_write_used = false;
|
||||
} else if (branch_exec_tempid && instr->definitions.size() &&
|
||||
instr->definitions[0].tempId() == branch_exec_tempid) {
|
||||
/* We just found the instruction that produces the exec mask that is copied. */
|
||||
assert(branch_exec_val_idx == -1);
|
||||
branch_exec_val_idx = i;
|
||||
} else if (branch_exec_tempid && branch_exec_val_idx == -1 && needs_exec) {
|
||||
/* There is an instruction that needs the original exec mask before
|
||||
* branch_exec_val_idx was found, so we can't optimize the branching sequence. */
|
||||
branch_exec_copy_idx = -1;
|
||||
branch_exec_tempid = 0;
|
||||
}
|
||||
|
||||
/* If the current instruction needs exec, mark it as used. */
|
||||
exec_write_used |= needs_exec;
|
||||
|
|
@ -721,12 +361,6 @@ eliminate_useless_exec_writes_in_block(jump_threading_ctx& ctx, Block& block)
|
|||
/* Remember if the current block needs an incoming exec mask from its predecessors. */
|
||||
ctx.blocks_incoming_exec_used[block.index] = exec_write_used;
|
||||
|
||||
/* See if we can optimize the instruction that produces the exec mask. */
|
||||
if (branch_exec_val_idx != -1) {
|
||||
assert(branch_exec_tempid && branch_exec_copy_idx != -1);
|
||||
try_optimize_branching_sequence(ctx, block, branch_exec_val_idx, branch_exec_copy_idx);
|
||||
}
|
||||
|
||||
/* Cleanup: remove deleted instructions from the vector. */
|
||||
auto new_end = std::remove(block.instructions.begin(), block.instructions.end(), nullptr);
|
||||
block.instructions.resize(new_end - block.instructions.begin());
|
||||
|
|
|
|||
Loading…
Add table
Reference in a new issue