st/mesa: Use Array._DrawVAO in st_atom_array.c.

Finally make use of the binding information in the VAO when
setting up arrays for draw.

v2: Emit less relocations also for interleaved userspace arrays.

Reviewed-by: Brian Paul <brianp@vmware.com>
Signed-off-by: Mathias Fröhlich <Mathias.Froehlich@web.de>
This commit is contained in:
Mathias Fröhlich 2018-04-01 20:18:36 +02:00 committed by Mathias Fröhlich
parent 9987a072cb
commit 19a91841c3

View file

@ -48,6 +48,7 @@
#include "main/bufferobj.h" #include "main/bufferobj.h"
#include "main/glformats.h" #include "main/glformats.h"
#include "main/varray.h" #include "main/varray.h"
#include "main/arrayobj.h"
/* vertex_formats[gltype - GL_BYTE][integer*2 + normalized][size - 1] */ /* vertex_formats[gltype - GL_BYTE][integer*2 + normalized][size - 1] */
static const uint16_t vertex_formats[][4][4] = { static const uint16_t vertex_formats[][4][4] = {
@ -306,79 +307,6 @@ st_pipe_vertex_format(const struct gl_array_attributes *attrib)
return vertex_formats[type - GL_BYTE][index][size-1]; return vertex_formats[type - GL_BYTE][index][size-1];
} }
static const struct gl_vertex_array *
get_client_array(const struct gl_vertex_array *arrays,
unsigned mesaAttr)
{
/* st_program uses 0xffffffff to denote a double placeholder attribute */
if (mesaAttr == ST_DOUBLE_ATTRIB_PLACEHOLDER)
return NULL;
return &arrays[mesaAttr];
}
/**
* Examine the active arrays to determine if we have interleaved
* vertex arrays all living in one VBO, or all living in user space.
*/
static GLboolean
is_interleaved_arrays(const struct st_vertex_program *vp,
const struct gl_vertex_array *arrays,
unsigned num_inputs)
{
GLuint attr;
const struct gl_buffer_object *firstBufObj = NULL;
GLint firstStride = -1;
const GLubyte *firstPtr = NULL;
GLboolean userSpaceBuffer = GL_FALSE;
for (attr = 0; attr < num_inputs; attr++) {
const struct gl_vertex_array *array;
const struct gl_vertex_buffer_binding *binding;
const struct gl_array_attributes *attrib;
const GLubyte *ptr;
const struct gl_buffer_object *bufObj;
GLsizei stride;
array = get_client_array(arrays, vp->index_to_input[attr]);
if (!array)
continue;
binding = array->BufferBinding;
attrib = array->VertexAttrib;
stride = binding->Stride; /* in bytes */
ptr = _mesa_vertex_attrib_address(attrib, binding);
/* To keep things simple, don't allow interleaved zero-stride attribs. */
if (stride == 0)
return false;
bufObj = binding->BufferObj;
if (attr == 0) {
/* save info about the first array */
firstStride = stride;
firstPtr = ptr;
firstBufObj = bufObj;
userSpaceBuffer = !_mesa_is_bufferobj(bufObj);
}
else {
/* check if other arrays interleave with the first, in same buffer */
if (stride != firstStride)
return GL_FALSE; /* strides don't match */
if (bufObj != firstBufObj)
return GL_FALSE; /* arrays in different VBOs */
if (llabs(ptr - firstPtr) > firstStride)
return GL_FALSE; /* arrays start too far apart */
if ((!_mesa_is_bufferobj(bufObj)) != userSpaceBuffer)
return GL_FALSE; /* mix of VBO and user-space arrays */
}
}
return GL_TRUE;
}
static void init_velement(struct pipe_vertex_element *velement, static void init_velement(struct pipe_vertex_element *velement,
int src_offset, int format, int src_offset, int format,
int instance_divisor, int vbo_index) int instance_divisor, int vbo_index)
@ -392,13 +320,14 @@ static void init_velement(struct pipe_vertex_element *velement,
static void init_velement_lowered(const struct st_vertex_program *vp, static void init_velement_lowered(const struct st_vertex_program *vp,
struct pipe_vertex_element *velements, struct pipe_vertex_element *velements,
int src_offset, int format, const struct gl_array_attributes *attrib,
int instance_divisor, int vbo_index, int src_offset, int instance_divisor,
int nr_components, GLboolean doubles, int vbo_index, int idx)
GLuint *attr_idx)
{ {
int idx = *attr_idx; const unsigned format = st_pipe_vertex_format(attrib);
if (doubles) { const GLubyte nr_components = attrib->Size;
if (attrib->Doubles) {
int lower_format; int lower_format;
if (nr_components < 2) if (nr_components < 2)
@ -427,15 +356,11 @@ static void init_velement_lowered(const struct st_vertex_program *vp,
init_velement(&velements[idx], src_offset, PIPE_FORMAT_R32G32_UINT, init_velement(&velements[idx], src_offset, PIPE_FORMAT_R32G32_UINT,
instance_divisor, vbo_index); instance_divisor, vbo_index);
} }
idx++;
} }
} else { } else {
init_velement(&velements[idx], src_offset, init_velement(&velements[idx], src_offset,
format, instance_divisor, vbo_index); format, instance_divisor, vbo_index);
idx++;
} }
*attr_idx = idx;
} }
static void static void
@ -457,274 +382,132 @@ set_vertex_attribs(struct st_context *st,
cso_set_vertex_elements(cso, num_velements, velements); cso_set_vertex_elements(cso, num_velements, velements);
} }
/** void
* Set up for drawing interleaved arrays that all live in one VBO st_update_array(struct st_context *st)
* or all live in user space.
* \param vbuffer returns vertex buffer info
* \param velements returns vertex element info
*/
static void
setup_interleaved_attribs(struct st_context *st,
const struct st_vertex_program *vp,
const struct gl_vertex_array *arrays,
unsigned num_inputs)
{
struct pipe_vertex_buffer vbuffer;
struct pipe_vertex_element velements[PIPE_MAX_ATTRIBS] = {{0}};
GLuint attr;
const GLubyte *low_addr = NULL;
GLboolean usingVBO; /* all arrays in a VBO? */
struct gl_buffer_object *bufobj;
GLsizei stride;
/* Find the lowest address of the arrays we're drawing,
* Init bufobj and stride.
*/
if (num_inputs) {
const struct gl_vertex_array *array;
const struct gl_vertex_buffer_binding *binding;
const struct gl_array_attributes *attrib;
array = get_client_array(arrays, vp->index_to_input[0]);
assert(array);
binding = array->BufferBinding;
attrib = array->VertexAttrib;
/* Since we're doing interleaved arrays, we know there'll be at most
* one buffer object and the stride will be the same for all arrays.
* Grab them now.
*/
bufobj = binding->BufferObj;
stride = binding->Stride;
low_addr = _mesa_vertex_attrib_address(attrib, binding);
for (attr = 1; attr < num_inputs; attr++) {
const GLubyte *start;
array = get_client_array(arrays, vp->index_to_input[attr]);
if (!array)
continue;
binding = array->BufferBinding;
attrib = array->VertexAttrib;
start = _mesa_vertex_attrib_address(attrib, binding);
low_addr = MIN2(low_addr, start);
}
}
else {
/* not sure we'll ever have zero inputs, but play it safe */
bufobj = NULL;
stride = 0;
low_addr = 0;
}
/* are the arrays in user space? */
usingVBO = _mesa_is_bufferobj(bufobj);
for (attr = 0; attr < num_inputs;) {
const struct gl_vertex_array *array;
const struct gl_vertex_buffer_binding *binding;
const struct gl_array_attributes *attrib;
const GLubyte *ptr;
unsigned src_offset;
unsigned src_format;
array = get_client_array(arrays, vp->index_to_input[attr]);
assert(array);
binding = array->BufferBinding;
attrib = array->VertexAttrib;
ptr = _mesa_vertex_attrib_address(attrib, binding);
src_offset = (unsigned) (ptr - low_addr);
src_format = st_pipe_vertex_format(attrib);
init_velement_lowered(vp, velements, src_offset, src_format,
binding->InstanceDivisor, 0,
attrib->Size, attrib->Doubles, &attr);
}
/*
* Return the vbuffer info and setup user-space attrib info, if needed.
*/
if (num_inputs == 0) {
/* just defensive coding here */
vbuffer.buffer.resource = NULL;
vbuffer.is_user_buffer = false;
vbuffer.buffer_offset = 0;
vbuffer.stride = 0;
}
else if (usingVBO) {
/* all interleaved arrays in a VBO */
struct st_buffer_object *stobj = st_buffer_object(bufobj);
if (!stobj || !stobj->buffer) {
st->vertex_array_out_of_memory = true;
return; /* out-of-memory error probably */
}
vbuffer.buffer.resource = stobj->buffer;
vbuffer.is_user_buffer = false;
vbuffer.buffer_offset = pointer_to_offset(low_addr);
vbuffer.stride = stride;
}
else {
/* all interleaved arrays in user memory */
vbuffer.buffer.user = low_addr;
vbuffer.is_user_buffer = !!low_addr; /* if NULL, then unbind */
vbuffer.buffer_offset = 0;
vbuffer.stride = stride;
if (low_addr)
st->draw_needs_minmax_index = true;
}
set_vertex_attribs(st, &vbuffer, num_inputs ? 1 : 0,
velements, num_inputs);
}
/**
* Set up a separate pipe_vertex_buffer and pipe_vertex_element for each
* vertex attribute.
* \param vbuffer returns vertex buffer info
* \param velements returns vertex element info
*/
static void
setup_non_interleaved_attribs(struct st_context *st,
const struct st_vertex_program *vp,
const struct gl_vertex_array *arrays,
unsigned num_inputs)
{ {
struct gl_context *ctx = st->ctx; struct gl_context *ctx = st->ctx;
/* vertex program validation must be done before this */
const struct st_vertex_program *vp = st->vp;
/* _NEW_PROGRAM, ST_NEW_VS_STATE */
const GLbitfield inputs_read = st->vp_variant->vert_attrib_mask;
const struct gl_vertex_array_object *vao = ctx->Array._DrawVAO;
const ubyte *input_to_index = vp->input_to_index;
struct pipe_vertex_buffer vbuffer[PIPE_MAX_ATTRIBS]; struct pipe_vertex_buffer vbuffer[PIPE_MAX_ATTRIBS];
struct pipe_vertex_element velements[PIPE_MAX_ATTRIBS] = {{0}}; struct pipe_vertex_element velements[PIPE_MAX_ATTRIBS];
unsigned num_vbuffers = 0; unsigned num_vbuffers = 0;
unsigned unref_buffers = 0;
GLuint attr;
for (attr = 0; attr < num_inputs;) { st->vertex_array_out_of_memory = FALSE;
const unsigned mesaAttr = vp->index_to_input[attr]; st->draw_needs_minmax_index = false;
const struct gl_vertex_array *array;
const struct gl_vertex_buffer_binding *binding;
const struct gl_array_attributes *attrib;
struct gl_buffer_object *bufobj;
GLsizei stride;
unsigned src_format;
unsigned bufidx;
array = get_client_array(arrays, mesaAttr); /* _NEW_PROGRAM */
assert(array); /* ST_NEW_VERTEX_ARRAYS alias ctx->DriverFlags.NewArray */
/* Process attribute array data. */
bufidx = num_vbuffers++; GLbitfield mask = inputs_read & _mesa_draw_array_bits(ctx);
while (mask) {
binding = array->BufferBinding; /* The attribute index to start pulling a binding */
attrib = array->VertexAttrib; const gl_vert_attrib i = ffs(mask) - 1;
stride = binding->Stride; const struct gl_vertex_buffer_binding *const binding
bufobj = binding->BufferObj; = _mesa_draw_buffer_binding(vao, i);
const unsigned bufidx = num_vbuffers++;
if (_mesa_is_bufferobj(bufobj)) {
/* Attribute data is in a VBO.
* Recall that for VBOs, the gl_vertex_array->Ptr field is
* really an offset from the start of the VBO, not a pointer.
*/
struct st_buffer_object *stobj = st_buffer_object(bufobj);
if (_mesa_is_bufferobj(binding->BufferObj)) {
struct st_buffer_object *stobj = st_buffer_object(binding->BufferObj);
if (!stobj || !stobj->buffer) { if (!stobj || !stobj->buffer) {
st->vertex_array_out_of_memory = true; st->vertex_array_out_of_memory = true;
return; /* out-of-memory error probably */ return; /* out-of-memory error probably */
} }
/* Set the binding */
vbuffer[bufidx].buffer.resource = stobj->buffer; vbuffer[bufidx].buffer.resource = stobj->buffer;
vbuffer[bufidx].is_user_buffer = false; vbuffer[bufidx].is_user_buffer = false;
vbuffer[bufidx].buffer_offset = vbuffer[bufidx].buffer_offset = _mesa_draw_binding_offset(binding);
binding->Offset + attrib->RelativeOffset;
}
else {
if (stride == 0) {
unsigned size = attrib->_ElementSize;
/* This is optimal for GPU cache line usage if the upload size
* is <= cache line size.
*/
unsigned alignment = util_next_power_of_two(size);
assert(attrib->Ptr);
vbuffer[bufidx].buffer.user = attrib->Ptr;
void *ptr = attrib->Ptr ? (void*)attrib->Ptr :
(void*)ctx->Current.Attrib[mesaAttr];
vbuffer[bufidx].is_user_buffer = false;
vbuffer[bufidx].buffer.resource = NULL;
/* Use const_uploader for zero-stride vertex attributes, because
* it may use a better memory placement than stream_uploader.
* The reason is that zero-stride attributes can be fetched many
* times (thousands of times), so a better placement is going to
* perform better.
*
* Upload the maximum possible size, which is 4x GLdouble = 32.
*/
u_upload_data(st->can_bind_const_buffer_as_vertex ?
st->pipe->const_uploader :
st->pipe->stream_uploader,
0, size, alignment, ptr,
&vbuffer[bufidx].buffer_offset,
&vbuffer[bufidx].buffer.resource);
unref_buffers |= 1u << bufidx;
} else { } else {
assert(attrib->Ptr); /* Set the binding */
vbuffer[bufidx].buffer.user = attrib->Ptr; const void *ptr = (const void *)_mesa_draw_binding_offset(binding);
vbuffer[bufidx].buffer.user = ptr;
vbuffer[bufidx].is_user_buffer = true; vbuffer[bufidx].is_user_buffer = true;
vbuffer[bufidx].buffer_offset = 0; vbuffer[bufidx].buffer_offset = 0;
if (!binding->InstanceDivisor) if (!binding->InstanceDivisor)
st->draw_needs_minmax_index = true; st->draw_needs_minmax_index = true;
} }
vbuffer[bufidx].stride = binding->Stride; /* in bytes */
const GLbitfield boundmask = _mesa_draw_bound_attrib_bits(binding);
GLbitfield attrmask = mask & boundmask;
/* Mark the those attributes as processed */
mask &= ~boundmask;
/* We can assume that we have array for the binding */
assert(attrmask);
/* Walk attributes belonging to the binding */
while (attrmask) {
const gl_vert_attrib attr = u_bit_scan(&attrmask);
const struct gl_array_attributes *const attrib
= _mesa_draw_array_attrib(vao, attr);
const GLuint off = _mesa_draw_attributes_relative_offset(attrib);
init_velement_lowered(vp, velements, attrib, off,
binding->InstanceDivisor, bufidx,
input_to_index[attr]);
}
} }
/* common-case setup */ const unsigned first_current_vbuffer = num_vbuffers;
vbuffer[bufidx].stride = stride; /* in bytes */ /* _NEW_PROGRAM | _NEW_CURRENT_ATTRIB */
/* Process values that should have better been uniforms in the application */
GLbitfield curmask = inputs_read & _mesa_draw_current_bits(ctx);
if (curmask) {
/* For each attribute, upload the maximum possible size. */
GLubyte data[VERT_ATTRIB_MAX * sizeof(GLdouble) * 4];
GLubyte *cursor = data;
const unsigned bufidx = num_vbuffers++;
unsigned max_alignment = 1;
src_format = st_pipe_vertex_format(attrib); while (curmask) {
const gl_vert_attrib attr = u_bit_scan(&curmask);
const struct gl_array_attributes *const attrib
= _mesa_draw_current_attrib(ctx, attr);
const unsigned size = attrib->_ElementSize;
const unsigned alignment = util_next_power_of_two(size);
max_alignment = MAX2(max_alignment, alignment);
memcpy(cursor, attrib->Ptr, size);
if (alignment != size)
memset(cursor + size, 0, alignment - size);
init_velement_lowered(vp, velements, 0, src_format, init_velement_lowered(vp, velements, attrib, cursor - data, 0,
binding->InstanceDivisor, bufidx, bufidx, input_to_index[attr]);
attrib->Size, attrib->Doubles, &attr);
cursor += alignment;
}
vbuffer[bufidx].is_user_buffer = false;
vbuffer[bufidx].buffer.resource = NULL;
/* vbuffer[bufidx].buffer_offset is set below */
vbuffer[bufidx].stride = 0;
/* Use const_uploader for zero-stride vertex attributes, because
* it may use a better memory placement than stream_uploader.
* The reason is that zero-stride attributes can be fetched many
* times (thousands of times), so a better placement is going to
* perform better.
*/
u_upload_data(st->can_bind_const_buffer_as_vertex ?
st->pipe->const_uploader :
st->pipe->stream_uploader,
0, cursor - data, max_alignment, data,
&vbuffer[bufidx].buffer_offset,
&vbuffer[bufidx].buffer.resource);
} }
if (!ctx->Const.AllowMappedBuffersDuringExecution) { if (!ctx->Const.AllowMappedBuffersDuringExecution) {
u_upload_unmap(st->pipe->stream_uploader); u_upload_unmap(st->pipe->stream_uploader);
} }
const unsigned num_inputs = st->vp_variant->num_inputs;
set_vertex_attribs(st, vbuffer, num_vbuffers, velements, num_inputs); set_vertex_attribs(st, vbuffer, num_vbuffers, velements, num_inputs);
/* Unreference uploaded zero-stride vertex buffers. */ /* Unreference uploaded zero-stride vertex buffers. */
while (unref_buffers) { for (unsigned i = first_current_vbuffer; i < num_vbuffers; ++i) {
unsigned i = u_bit_scan(&unref_buffers);
pipe_resource_reference(&vbuffer[i].buffer.resource, NULL); pipe_resource_reference(&vbuffer[i].buffer.resource, NULL);
} }
} }
void st_update_array(struct st_context *st)
{
struct gl_context *ctx = st->ctx;
const struct gl_vertex_array *arrays = ctx->Array._DrawArrays;
const struct st_vertex_program *vp;
unsigned num_inputs;
st->vertex_array_out_of_memory = FALSE;
st->draw_needs_minmax_index = false;
/* No drawing has been done yet, so do nothing. */
if (!arrays)
return;
/* vertex program validation must be done before this */
vp = st->vp;
num_inputs = st->vp_variant->num_inputs;
if (is_interleaved_arrays(vp, arrays, num_inputs))
setup_interleaved_attribs(st, vp, arrays, num_inputs);
else
setup_non_interleaved_attribs(st, vp, arrays, num_inputs);
}