i965/fs: Split fs_visitor::register_coalesce() into its own file.

The function has gotten large, and brw_fs.cpp is the largest source file
in the driver.

Reviewed-by: Anuj Phogat <anuj.phogat@gmail.com>
This commit is contained in:
Matt Turner 2014-02-07 18:17:03 -08:00
parent 8b1ab5c93b
commit 0fbcdec2f6
3 changed files with 209 additions and 181 deletions

View file

@ -63,6 +63,7 @@ i965_FILES = \
brw_fs_live_variables.cpp \
brw_fs_peephole_predicated_break.cpp \
brw_fs_reg_allocate.cpp \
brw_fs_register_coalesce.cpp \
brw_fs_saturate_propagation.cpp \
brw_fs_sel_peephole.cpp \
brw_fs_vector_splitting.cpp \

View file

@ -2287,187 +2287,6 @@ fs_visitor::dead_code_eliminate_local()
return progress;
}
/**
* Implements register coalescing: Checks if the two registers involved in a
* raw move don't interfere, in which case they can both be stored in the same
* place and the MOV removed.
*
* To do this, all uses of the source of the MOV in the shader are replaced
* with the destination of the MOV. For example:
*
* add vgrf3:F, vgrf1:F, vgrf2:F
* mov vgrf4:F, vgrf3:F
* mul vgrf5:F, vgrf5:F, vgrf4:F
*
* becomes
*
* add vgrf4:F, vgrf1:F, vgrf2:F
* mul vgrf5:F, vgrf5:F, vgrf4:F
*/
bool
fs_visitor::register_coalesce()
{
bool progress = false;
calculate_live_intervals();
int src_size = 0;
int channels_remaining = 0;
int reg_from = -1, reg_to = -1;
int reg_to_offset[MAX_SAMPLER_MESSAGE_SIZE];
fs_inst *mov[MAX_SAMPLER_MESSAGE_SIZE];
foreach_list(node, &this->instructions) {
fs_inst *inst = (fs_inst *)node;
if (inst->opcode != BRW_OPCODE_MOV ||
inst->is_partial_write() ||
inst->saturate ||
inst->src[0].file != GRF ||
inst->src[0].negate ||
inst->src[0].abs ||
!inst->src[0].is_contiguous() ||
inst->dst.file != GRF ||
inst->dst.type != inst->src[0].type) {
continue;
}
if (virtual_grf_sizes[inst->src[0].reg] >
virtual_grf_sizes[inst->dst.reg])
continue;
int var_from = live_intervals->var_from_reg(&inst->src[0]);
int var_to = live_intervals->var_from_reg(&inst->dst);
if (live_intervals->vars_interfere(var_from, var_to) &&
!inst->dst.equals(inst->src[0])) {
/* We know that the live ranges of A (var_from) and B (var_to)
* interfere because of the ->vars_interfere() call above. If the end
* of B's live range is after the end of A's range, then we know two
* things:
* - the start of B's live range must be in A's live range (since we
* already know the two ranges interfere, this is the only remaining
* possibility)
* - the interference isn't of the form we're looking for (where B is
* entirely inside A)
*/
if (live_intervals->end[var_to] > live_intervals->end[var_from])
continue;
bool overwritten = false;
int scan_ip = -1;
foreach_list(n, &this->instructions) {
fs_inst *scan_inst = (fs_inst *)n;
scan_ip++;
if (scan_inst->is_control_flow()) {
overwritten = true;
break;
}
if (scan_ip <= live_intervals->start[var_to])
continue;
if (scan_ip > live_intervals->end[var_to])
break;
if (scan_inst->dst.equals(inst->dst) ||
scan_inst->dst.equals(inst->src[0])) {
overwritten = true;
break;
}
}
if (overwritten)
continue;
}
if (reg_from != inst->src[0].reg) {
reg_from = inst->src[0].reg;
src_size = virtual_grf_sizes[inst->src[0].reg];
assert(src_size <= MAX_SAMPLER_MESSAGE_SIZE);
channels_remaining = src_size;
memset(mov, 0, sizeof(mov));
reg_to = inst->dst.reg;
}
if (reg_to != inst->dst.reg)
continue;
const int offset = inst->src[0].reg_offset;
reg_to_offset[offset] = inst->dst.reg_offset;
mov[offset] = inst;
channels_remaining--;
if (channels_remaining)
continue;
bool removed = false;
for (int i = 0; i < src_size; i++) {
if (mov[i]) {
removed = true;
mov[i]->opcode = BRW_OPCODE_NOP;
mov[i]->conditional_mod = BRW_CONDITIONAL_NONE;
mov[i]->dst = reg_undef;
mov[i]->src[0] = reg_undef;
mov[i]->src[1] = reg_undef;
mov[i]->src[2] = reg_undef;
}
}
foreach_list(node, &this->instructions) {
fs_inst *scan_inst = (fs_inst *)node;
for (int i = 0; i < src_size; i++) {
if (mov[i]) {
if (scan_inst->dst.file == GRF &&
scan_inst->dst.reg == reg_from &&
scan_inst->dst.reg_offset == i) {
scan_inst->dst.reg = reg_to;
scan_inst->dst.reg_offset = reg_to_offset[i];
}
for (int j = 0; j < 3; j++) {
if (scan_inst->src[j].file == GRF &&
scan_inst->src[j].reg == reg_from &&
scan_inst->src[j].reg_offset == i) {
scan_inst->src[j].reg = reg_to;
scan_inst->src[j].reg_offset = reg_to_offset[i];
}
}
}
}
}
if (removed) {
live_intervals->start[var_to] = MIN2(live_intervals->start[var_to],
live_intervals->start[var_from]);
live_intervals->end[var_to] = MAX2(live_intervals->end[var_to],
live_intervals->end[var_from]);
reg_from = -1;
}
}
foreach_list_safe(node, &this->instructions) {
fs_inst *inst = (fs_inst *)node;
if (inst->opcode == BRW_OPCODE_NOP) {
inst->remove();
progress = true;
}
}
if (progress)
invalidate_live_intervals();
return progress;
}
bool
fs_visitor::compute_to_mrf()
{

View file

@ -0,0 +1,208 @@
/*
* Copyright © 2012 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
/** @file brw_fs_register_coalesce.cpp
*
* Implements register coalescing: Checks if the two registers involved in a
* raw move don't interfere, in which case they can both be stored in the same
* place and the MOV removed.
*
* To do this, all uses of the source of the MOV in the shader are replaced
* with the destination of the MOV. For example:
*
* add vgrf3:F, vgrf1:F, vgrf2:F
* mov vgrf4:F, vgrf3:F
* mul vgrf5:F, vgrf5:F, vgrf4:F
*
* becomes
*
* add vgrf4:F, vgrf1:F, vgrf2:F
* mul vgrf5:F, vgrf5:F, vgrf4:F
*/
#include "brw_fs.h"
#include "brw_fs_live_variables.h"
bool
fs_visitor::register_coalesce()
{
bool progress = false;
calculate_live_intervals();
int src_size = 0;
int channels_remaining = 0;
int reg_from = -1, reg_to = -1;
int reg_to_offset[MAX_SAMPLER_MESSAGE_SIZE];
fs_inst *mov[MAX_SAMPLER_MESSAGE_SIZE];
foreach_list(node, &this->instructions) {
fs_inst *inst = (fs_inst *)node;
if (inst->opcode != BRW_OPCODE_MOV ||
inst->is_partial_write() ||
inst->saturate ||
inst->src[0].file != GRF ||
inst->src[0].negate ||
inst->src[0].abs ||
!inst->src[0].is_contiguous() ||
inst->dst.file != GRF ||
inst->dst.type != inst->src[0].type) {
continue;
}
if (virtual_grf_sizes[inst->src[0].reg] >
virtual_grf_sizes[inst->dst.reg])
continue;
int var_from = live_intervals->var_from_reg(&inst->src[0]);
int var_to = live_intervals->var_from_reg(&inst->dst);
if (live_intervals->vars_interfere(var_from, var_to) &&
!inst->dst.equals(inst->src[0])) {
/* We know that the live ranges of A (var_from) and B (var_to)
* interfere because of the ->vars_interfere() call above. If the end
* of B's live range is after the end of A's range, then we know two
* things:
* - the start of B's live range must be in A's live range (since we
* already know the two ranges interfere, this is the only remaining
* possibility)
* - the interference isn't of the form we're looking for (where B is
* entirely inside A)
*/
if (live_intervals->end[var_to] > live_intervals->end[var_from])
continue;
bool overwritten = false;
int scan_ip = -1;
foreach_list(n, &this->instructions) {
fs_inst *scan_inst = (fs_inst *)n;
scan_ip++;
if (scan_inst->is_control_flow()) {
overwritten = true;
break;
}
if (scan_ip <= live_intervals->start[var_to])
continue;
if (scan_ip > live_intervals->end[var_to])
break;
if (scan_inst->dst.equals(inst->dst) ||
scan_inst->dst.equals(inst->src[0])) {
overwritten = true;
break;
}
}
if (overwritten)
continue;
}
if (reg_from != inst->src[0].reg) {
reg_from = inst->src[0].reg;
src_size = virtual_grf_sizes[inst->src[0].reg];
assert(src_size <= MAX_SAMPLER_MESSAGE_SIZE);
channels_remaining = src_size;
memset(mov, 0, sizeof(mov));
reg_to = inst->dst.reg;
}
if (reg_to != inst->dst.reg)
continue;
const int offset = inst->src[0].reg_offset;
reg_to_offset[offset] = inst->dst.reg_offset;
mov[offset] = inst;
channels_remaining--;
if (channels_remaining)
continue;
bool removed = false;
for (int i = 0; i < src_size; i++) {
if (mov[i]) {
removed = true;
mov[i]->opcode = BRW_OPCODE_NOP;
mov[i]->conditional_mod = BRW_CONDITIONAL_NONE;
mov[i]->dst = reg_undef;
mov[i]->src[0] = reg_undef;
mov[i]->src[1] = reg_undef;
mov[i]->src[2] = reg_undef;
}
}
foreach_list(node, &this->instructions) {
fs_inst *scan_inst = (fs_inst *)node;
for (int i = 0; i < src_size; i++) {
if (mov[i]) {
if (scan_inst->dst.file == GRF &&
scan_inst->dst.reg == reg_from &&
scan_inst->dst.reg_offset == i) {
scan_inst->dst.reg = reg_to;
scan_inst->dst.reg_offset = reg_to_offset[i];
}
for (int j = 0; j < 3; j++) {
if (scan_inst->src[j].file == GRF &&
scan_inst->src[j].reg == reg_from &&
scan_inst->src[j].reg_offset == i) {
scan_inst->src[j].reg = reg_to;
scan_inst->src[j].reg_offset = reg_to_offset[i];
}
}
}
}
}
if (removed) {
live_intervals->start[var_to] = MIN2(live_intervals->start[var_to],
live_intervals->start[var_from]);
live_intervals->end[var_to] = MAX2(live_intervals->end[var_to],
live_intervals->end[var_from]);
reg_from = -1;
}
}
foreach_list_safe(node, &this->instructions) {
fs_inst *inst = (fs_inst *)node;
if (inst->opcode == BRW_OPCODE_NOP) {
inst->remove();
progress = true;
}
}
if (progress)
invalidate_live_intervals();
return progress;
}