aco: rewrite literal combining

Should make taking advantage of GFX10's increased constant bus limit and
VOP3 literals easier.

No pipeline-db changes

Signed-off-by: Rhys Perry <pendingchaos02@gmail.com>
Reviewed-by: Daniel Schürmann <daniel@schuermann.dev>
Part-of: <https://gitlab.freedesktop.org/mesa/mesa/merge_requests/2883>
This commit is contained in:
Rhys Perry 2019-11-22 13:43:39 +00:00 committed by Marge Bot
parent 84b9f3786b
commit 0be7409069

View file

@ -497,19 +497,6 @@ bool can_accept_constant(aco_ptr<Instruction>& instr, unsigned operand)
}
}
bool valu_can_accept_literal(opt_ctx& ctx, aco_ptr<Instruction>& instr, unsigned operand)
{
/* instructions like v_cndmask_b32 can't take a literal because they always
* read SGPRs */
if (instr->operands.size() >= 3 &&
instr->operands[2].isTemp() && instr->operands[2].regClass().type() == RegType::sgpr)
return false;
// TODO: VOP3 can take a literal on GFX10
return !instr->isSDWA() && !instr->isDPP() && !instr->isVOP3() &&
operand == 0 && can_accept_constant(instr, operand);
}
bool valu_can_accept_vgpr(aco_ptr<Instruction>& instr, unsigned operand)
{
if (instr->opcode == aco_opcode::v_readlane_b32 || instr->opcode == aco_opcode::v_readlane_b32_e64 ||
@ -2349,43 +2336,74 @@ void select_instruction(opt_ctx &ctx, aco_ptr<Instruction>& instr)
info->check_literal = true;
info->literal_idx = literal_idx;
}
return;
}
}
/* check for literals */
if (!instr->isSALU() && !instr->isVALU())
return;
if (instr->isSDWA() || instr->isDPP() || instr->isVOP3())
return; /* some encodings can't ever take literals */
/* we do not apply the literals yet as we don't know if it is profitable */
if (instr->isSALU()) {
uint32_t literal_idx = 0;
uint32_t literal_uses = UINT32_MAX;
bool has_literal = false;
for (unsigned i = 0; i < instr->operands.size(); i++)
{
if (instr->operands[i].isLiteral()) {
has_literal = true;
break;
}
if (!instr->operands[i].isTemp())
Operand current_literal(s1);
unsigned literal_id = 0;
unsigned literal_uses = UINT32_MAX;
Operand literal(s1);
unsigned num_operands = instr->isSALU() ? instr->operands.size() : 1;
unsigned sgpr_ids[2] = {0, 0};
bool is_literal_sgpr = false;
uint32_t mask = 0;
/* choose a literal to apply */
for (unsigned i = 0; i < num_operands; i++) {
Operand op = instr->operands[i];
if (op.isLiteral()) {
current_literal = op;
continue;
} else if (!op.isTemp() || !ctx.info[op.tempId()].is_literal()) {
if (instr->isVALU() && op.isTemp() && op.getTemp().type() == RegType::sgpr &&
op.tempId() != sgpr_ids[0])
sgpr_ids[!!sgpr_ids[0]] = op.tempId();
continue;
if (ctx.info[instr->operands[i].tempId()].is_literal() &&
ctx.uses[instr->operands[i].tempId()] < literal_uses) {
literal_uses = ctx.uses[instr->operands[i].tempId()];
literal_idx = i;
}
}
if (!has_literal && literal_uses < threshold) {
ctx.uses[instr->operands[literal_idx].tempId()]--;
if (ctx.uses[instr->operands[literal_idx].tempId()] == 0)
instr->operands[literal_idx] = Operand(ctx.info[instr->operands[literal_idx].tempId()].val);
}
} else if (instr->isVALU() && valu_can_accept_literal(ctx, instr, 0) &&
instr->operands[0].isTemp() &&
ctx.info[instr->operands[0].tempId()].is_literal() &&
ctx.uses[instr->operands[0].tempId()] < threshold) {
ctx.uses[instr->operands[0].tempId()]--;
if (ctx.uses[instr->operands[0].tempId()] == 0)
instr->operands[0] = Operand(ctx.info[instr->operands[0].tempId()].val);
}
if (!can_accept_constant(instr, i))
continue;
if (ctx.uses[op.tempId()] < literal_uses) {
is_literal_sgpr = op.getTemp().type() == RegType::sgpr;
mask = 0;
literal = Operand(ctx.info[op.tempId()].val);
literal_uses = ctx.uses[op.tempId()];
literal_id = op.tempId();
}
mask |= (op.tempId() == literal_id) << i;
}
/* don't go over the constant bus limit */
unsigned const_bus_limit = instr->isVALU() ? 1 : UINT32_MAX;
unsigned num_sgprs = !!sgpr_ids[0] + !!sgpr_ids[1];
if (num_sgprs == const_bus_limit && !is_literal_sgpr)
return;
if (literal_id && literal_uses < threshold &&
(current_literal.isUndefined() ||
(current_literal.size() == literal.size() &&
current_literal.constantValue() == literal.constantValue()))) {
/* mark the literal to be applied */
while (mask) {
unsigned i = u_bit_scan(&mask);
if (instr->operands[i].isTemp() && instr->operands[i].tempId() == literal_id)
ctx.uses[instr->operands[i].tempId()]--;
}
}
}
@ -2395,30 +2413,11 @@ void apply_literals(opt_ctx &ctx, aco_ptr<Instruction>& instr)
if (!instr)
return;
/* apply literals on SALU */
if (instr->isSALU()) {
for (Operand& op : instr->operands) {
if (!op.isTemp())
continue;
if (op.isLiteral())
break;
if (ctx.info[op.tempId()].is_literal() &&
ctx.uses[op.tempId()] == 0)
op = Operand(ctx.info[op.tempId()].val);
}
}
/* apply literals on VALU */
else if (instr->isVALU() && !instr->isVOP3() &&
instr->operands[0].isTemp() &&
ctx.info[instr->operands[0].tempId()].is_literal() &&
ctx.uses[instr->operands[0].tempId()] == 0) {
instr->operands[0] = Operand(ctx.info[instr->operands[0].tempId()].val);
}
/* apply literals on MAD */
else if (instr->opcode == aco_opcode::v_mad_f32 && ctx.info[instr->definitions[0].tempId()].is_mad()) {
bool literals_applied = false;
if (instr->opcode == aco_opcode::v_mad_f32 && ctx.info[instr->definitions[0].tempId()].is_mad()) {
mad_info* info = &ctx.mad_infos[ctx.info[instr->definitions[0].tempId()].val];
if (!info->needs_vop3) {
aco_ptr<Instruction> new_mad;
if (info->check_literal && ctx.uses[instr->operands[info->literal_idx].tempId()] == 0) {
if (info->literal_idx == 2) { /* add literal -> madak */
@ -2434,6 +2433,21 @@ void apply_literals(opt_ctx &ctx, aco_ptr<Instruction>& instr)
new_mad->definitions[0] = instr->definitions[0];
instr.swap(new_mad);
}
literals_applied = true;
}
}
/* apply literals on SALU/VALU */
if (!literals_applied && (instr->isSALU() || instr->isVALU())) {
for (unsigned i = 0; i < instr->operands.size(); i++) {
Operand op = instr->operands[i];
if (op.isTemp() && ctx.info[op.tempId()].is_literal() && ctx.uses[op.tempId()] == 0) {
Operand literal(ctx.info[op.tempId()].val);
if (instr->isVALU() && i > 0)
to_VOP3(ctx, instr);
instr->operands[i] = literal;
}
}
}
ctx.instructions.emplace_back(std::move(instr));