2016-12-09 22:31:26 -08:00
|
|
|
/*
|
|
|
|
|
* Copyright © 2016 Intel Corporation
|
|
|
|
|
*
|
|
|
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
|
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
|
|
|
* to deal in the Software without restriction, including without limitation
|
|
|
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
|
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
|
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
|
|
|
*
|
|
|
|
|
* The above copyright notice and this permission notice (including the next
|
|
|
|
|
* paragraph) shall be included in all copies or substantial portions of the
|
|
|
|
|
* Software.
|
|
|
|
|
*
|
|
|
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
|
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
|
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
|
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
|
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
|
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
|
|
|
|
|
* IN THE SOFTWARE.
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
#include "nir.h"
|
|
|
|
|
#include "nir_builder.h"
|
2018-03-27 20:57:30 -07:00
|
|
|
#include "nir_deref.h"
|
2016-12-09 22:31:26 -08:00
|
|
|
|
|
|
|
|
#include "util/bitscan.h"
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* Variable-based copy propagation
|
|
|
|
|
*
|
|
|
|
|
* Normally, NIR trusts in SSA form for most of its copy-propagation needs.
|
|
|
|
|
* However, there are cases, especially when dealing with indirects, where SSA
|
|
|
|
|
* won't help you. This pass is for those times. Specifically, it handles
|
|
|
|
|
* the following things that the rest of NIR can't:
|
|
|
|
|
*
|
|
|
|
|
* 1) Copy-propagation on variables that have indirect access. This includes
|
|
|
|
|
* propagating from indirect stores into indirect loads.
|
|
|
|
|
*
|
|
|
|
|
* 2) Dead code elimination of store_var and copy_var intrinsics based on
|
|
|
|
|
* killed destination values.
|
|
|
|
|
*
|
2018-03-27 20:57:30 -07:00
|
|
|
* 3) Removal of redundant load_deref intrinsics. We can't trust regular CSE
|
2016-12-09 22:31:26 -08:00
|
|
|
* to do this because it isn't aware of variable writes that may alias the
|
|
|
|
|
* value and make the former load invalid.
|
|
|
|
|
*
|
|
|
|
|
* Unfortunately, properly handling all of those cases makes this path rather
|
|
|
|
|
* complex. In order to avoid additional complexity, this pass is entirely
|
|
|
|
|
* block-local. If we tried to make it global, the data-flow analysis would
|
|
|
|
|
* rapidly get out of hand. Fortunately, for anything that is only ever
|
|
|
|
|
* accessed directly, we get SSA based copy-propagation which is extremely
|
|
|
|
|
* powerful so this isn't that great a loss.
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
struct value {
|
|
|
|
|
bool is_ssa;
|
|
|
|
|
union {
|
|
|
|
|
nir_ssa_def *ssa[4];
|
2018-03-27 20:57:30 -07:00
|
|
|
nir_deref_instr *deref;
|
2016-12-09 22:31:26 -08:00
|
|
|
};
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
struct copy_entry {
|
|
|
|
|
struct list_head link;
|
|
|
|
|
|
|
|
|
|
nir_instr *store_instr[4];
|
|
|
|
|
|
|
|
|
|
unsigned comps_may_be_read;
|
|
|
|
|
struct value src;
|
|
|
|
|
|
2018-03-27 20:57:30 -07:00
|
|
|
nir_deref_instr *dst;
|
2016-12-09 22:31:26 -08:00
|
|
|
};
|
|
|
|
|
|
|
|
|
|
struct copy_prop_var_state {
|
|
|
|
|
nir_shader *shader;
|
|
|
|
|
|
|
|
|
|
void *mem_ctx;
|
|
|
|
|
|
|
|
|
|
struct list_head copies;
|
|
|
|
|
|
|
|
|
|
/* We're going to be allocating and deleting a lot of copy entries so we'll
|
|
|
|
|
* keep a free list to avoid thrashing malloc too badly.
|
|
|
|
|
*/
|
|
|
|
|
struct list_head copy_free_list;
|
|
|
|
|
|
|
|
|
|
bool progress;
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
static struct copy_entry *
|
|
|
|
|
copy_entry_create(struct copy_prop_var_state *state,
|
2018-03-27 20:57:30 -07:00
|
|
|
nir_deref_instr *dst_deref)
|
2016-12-09 22:31:26 -08:00
|
|
|
{
|
|
|
|
|
struct copy_entry *entry;
|
|
|
|
|
if (!list_empty(&state->copy_free_list)) {
|
|
|
|
|
struct list_head *item = state->copy_free_list.next;
|
|
|
|
|
list_del(item);
|
|
|
|
|
entry = LIST_ENTRY(struct copy_entry, item, link);
|
|
|
|
|
memset(entry, 0, sizeof(*entry));
|
|
|
|
|
} else {
|
|
|
|
|
entry = rzalloc(state->mem_ctx, struct copy_entry);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
entry->dst = dst_deref;
|
|
|
|
|
list_add(&entry->link, &state->copies);
|
|
|
|
|
|
|
|
|
|
return entry;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static void
|
|
|
|
|
copy_entry_remove(struct copy_prop_var_state *state, struct copy_entry *entry)
|
|
|
|
|
{
|
|
|
|
|
list_del(&entry->link);
|
|
|
|
|
list_add(&entry->link, &state->copy_free_list);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
enum deref_compare_result {
|
|
|
|
|
derefs_equal_bit = (1 << 0),
|
|
|
|
|
derefs_may_alias_bit = (1 << 1),
|
|
|
|
|
derefs_a_contains_b_bit = (1 << 2),
|
|
|
|
|
derefs_b_contains_a_bit = (1 << 3),
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
/** Returns true if the storage referrenced to by deref completely contains
|
|
|
|
|
* the storage referenced by sub.
|
|
|
|
|
*
|
|
|
|
|
* NOTE: This is fairly general and could be moved to core NIR if someone else
|
|
|
|
|
* ever needs it.
|
|
|
|
|
*/
|
|
|
|
|
static enum deref_compare_result
|
2018-03-27 20:57:30 -07:00
|
|
|
compare_deref_paths(nir_deref_path *a_path,
|
|
|
|
|
nir_deref_path *b_path)
|
2016-12-09 22:31:26 -08:00
|
|
|
{
|
2018-03-27 20:57:30 -07:00
|
|
|
if (a_path->path[0]->var != b_path->path[0]->var)
|
2016-12-09 22:31:26 -08:00
|
|
|
return 0;
|
|
|
|
|
|
|
|
|
|
/* Start off assuming they fully compare. We ignore equality for now. In
|
|
|
|
|
* the end, we'll determine that by containment.
|
|
|
|
|
*/
|
|
|
|
|
enum deref_compare_result result = derefs_may_alias_bit |
|
|
|
|
|
derefs_a_contains_b_bit |
|
|
|
|
|
derefs_b_contains_a_bit;
|
|
|
|
|
|
2018-03-27 20:57:30 -07:00
|
|
|
nir_deref_instr **a_p = &a_path->path[1];
|
|
|
|
|
nir_deref_instr **b_p = &b_path->path[1];
|
|
|
|
|
while (*a_p != NULL && *b_p != NULL) {
|
|
|
|
|
nir_deref_instr *a_tail = *(a_p++);
|
|
|
|
|
nir_deref_instr *b_tail = *(b_p++);
|
2016-12-09 22:31:26 -08:00
|
|
|
|
|
|
|
|
switch (a_tail->deref_type) {
|
2018-03-27 20:57:30 -07:00
|
|
|
case nir_deref_type_array:
|
|
|
|
|
case nir_deref_type_array_wildcard: {
|
|
|
|
|
assert(b_tail->deref_type == nir_deref_type_array ||
|
|
|
|
|
b_tail->deref_type == nir_deref_type_array_wildcard);
|
2016-12-09 22:31:26 -08:00
|
|
|
|
2018-03-27 20:57:30 -07:00
|
|
|
if (a_tail->deref_type == nir_deref_type_array_wildcard) {
|
|
|
|
|
if (b_tail->deref_type != nir_deref_type_array_wildcard)
|
2016-12-09 22:31:26 -08:00
|
|
|
result &= ~derefs_b_contains_a_bit;
|
2018-03-27 20:57:30 -07:00
|
|
|
} else if (b_tail->deref_type == nir_deref_type_array_wildcard) {
|
|
|
|
|
if (a_tail->deref_type != nir_deref_type_array_wildcard)
|
2016-12-09 22:31:26 -08:00
|
|
|
result &= ~derefs_a_contains_b_bit;
|
2018-03-27 20:57:30 -07:00
|
|
|
} else {
|
|
|
|
|
assert(a_tail->deref_type == nir_deref_type_array &&
|
|
|
|
|
b_tail->deref_type == nir_deref_type_array);
|
|
|
|
|
assert(a_tail->arr.index.is_ssa && b_tail->arr.index.is_ssa);
|
|
|
|
|
|
|
|
|
|
nir_const_value *a_index_const =
|
|
|
|
|
nir_src_as_const_value(a_tail->arr.index);
|
|
|
|
|
nir_const_value *b_index_const =
|
|
|
|
|
nir_src_as_const_value(b_tail->arr.index);
|
|
|
|
|
if (a_index_const && b_index_const) {
|
|
|
|
|
/* If they're both direct and have different offsets, they
|
|
|
|
|
* don't even alias much less anything else.
|
2016-12-09 22:31:26 -08:00
|
|
|
*/
|
2018-03-27 20:57:30 -07:00
|
|
|
if (a_index_const->u32[0] != b_index_const->u32[0])
|
2016-12-09 22:31:26 -08:00
|
|
|
return 0;
|
2018-03-27 20:57:30 -07:00
|
|
|
} else if (a_tail->arr.index.ssa == b_tail->arr.index.ssa) {
|
|
|
|
|
/* They're the same indirect, continue on */
|
2016-12-09 22:31:26 -08:00
|
|
|
} else {
|
2018-03-27 20:57:30 -07:00
|
|
|
/* They're not the same index so we can't prove anything about
|
|
|
|
|
* containment.
|
2016-12-09 22:31:26 -08:00
|
|
|
*/
|
|
|
|
|
result &= ~(derefs_a_contains_b_bit | derefs_b_contains_a_bit);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
case nir_deref_type_struct: {
|
|
|
|
|
/* If they're different struct members, they don't even alias */
|
2018-03-27 20:57:30 -07:00
|
|
|
if (a_tail->strct.index != b_tail->strct.index)
|
2016-12-09 22:31:26 -08:00
|
|
|
return 0;
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
default:
|
|
|
|
|
unreachable("Invalid deref type");
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* If a is longer than b, then it can't contain b */
|
2018-03-27 20:57:30 -07:00
|
|
|
if (*a_p != NULL)
|
2016-12-09 22:31:26 -08:00
|
|
|
result &= ~derefs_a_contains_b_bit;
|
2018-03-27 20:57:30 -07:00
|
|
|
if (*b_p != NULL)
|
2016-12-09 22:31:26 -08:00
|
|
|
result &= ~derefs_b_contains_a_bit;
|
|
|
|
|
|
|
|
|
|
/* If a contains b and b contains a they must be equal. */
|
|
|
|
|
if ((result & derefs_a_contains_b_bit) && (result & derefs_b_contains_a_bit))
|
|
|
|
|
result |= derefs_equal_bit;
|
|
|
|
|
|
|
|
|
|
return result;
|
|
|
|
|
}
|
|
|
|
|
|
2018-03-27 20:57:30 -07:00
|
|
|
static enum deref_compare_result
|
|
|
|
|
compare_derefs(nir_deref_instr *a, nir_deref_instr *b)
|
|
|
|
|
{
|
|
|
|
|
if (a == b) {
|
|
|
|
|
return derefs_equal_bit | derefs_may_alias_bit |
|
|
|
|
|
derefs_a_contains_b_bit | derefs_b_contains_a_bit;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
nir_deref_path a_path, b_path;
|
|
|
|
|
nir_deref_path_init(&a_path, a, NULL);
|
|
|
|
|
nir_deref_path_init(&b_path, b, NULL);
|
|
|
|
|
assert(a_path.path[0]->deref_type == nir_deref_type_var);
|
|
|
|
|
assert(b_path.path[0]->deref_type == nir_deref_type_var);
|
|
|
|
|
|
|
|
|
|
enum deref_compare_result result = compare_deref_paths(&a_path, &b_path);
|
|
|
|
|
|
|
|
|
|
nir_deref_path_finish(&a_path);
|
|
|
|
|
nir_deref_path_finish(&b_path);
|
|
|
|
|
|
|
|
|
|
return result;
|
|
|
|
|
}
|
|
|
|
|
|
2016-12-09 22:31:26 -08:00
|
|
|
static void
|
|
|
|
|
remove_dead_writes(struct copy_prop_var_state *state,
|
|
|
|
|
struct copy_entry *entry, unsigned write_mask)
|
|
|
|
|
{
|
|
|
|
|
/* We're overwriting another entry. Some of it's components may not
|
|
|
|
|
* have been read yet and, if that's the case, we may be able to delete
|
|
|
|
|
* some instructions but we have to be careful.
|
|
|
|
|
*/
|
|
|
|
|
unsigned dead_comps = write_mask & ~entry->comps_may_be_read;
|
|
|
|
|
|
|
|
|
|
for (unsigned mask = dead_comps; mask;) {
|
|
|
|
|
unsigned i = u_bit_scan(&mask);
|
|
|
|
|
|
|
|
|
|
nir_instr *instr = entry->store_instr[i];
|
|
|
|
|
|
|
|
|
|
/* We may have already deleted it on a previous iteration */
|
|
|
|
|
if (!instr)
|
|
|
|
|
continue;
|
|
|
|
|
|
|
|
|
|
/* See if this instr is used anywhere that it's not dead */
|
|
|
|
|
bool keep = false;
|
|
|
|
|
for (unsigned j = 0; j < 4; j++) {
|
|
|
|
|
if (entry->store_instr[j] == instr) {
|
|
|
|
|
if (dead_comps & (1 << j)) {
|
|
|
|
|
entry->store_instr[j] = NULL;
|
|
|
|
|
} else {
|
|
|
|
|
keep = true;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (!keep) {
|
|
|
|
|
nir_instr_remove(instr);
|
|
|
|
|
state->progress = true;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static struct copy_entry *
|
|
|
|
|
lookup_entry_for_deref(struct copy_prop_var_state *state,
|
2018-03-27 20:57:30 -07:00
|
|
|
nir_deref_instr *deref,
|
2016-12-09 22:31:26 -08:00
|
|
|
enum deref_compare_result allowed_comparisons)
|
|
|
|
|
{
|
|
|
|
|
list_for_each_entry(struct copy_entry, iter, &state->copies, link) {
|
|
|
|
|
if (compare_derefs(iter->dst, deref) & allowed_comparisons)
|
|
|
|
|
return iter;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return NULL;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static void
|
|
|
|
|
mark_aliased_entries_as_read(struct copy_prop_var_state *state,
|
2018-03-27 20:57:30 -07:00
|
|
|
nir_deref_instr *deref, unsigned components)
|
2016-12-09 22:31:26 -08:00
|
|
|
{
|
|
|
|
|
list_for_each_entry(struct copy_entry, iter, &state->copies, link) {
|
|
|
|
|
if (compare_derefs(iter->dst, deref) & derefs_may_alias_bit)
|
|
|
|
|
iter->comps_may_be_read |= components;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static struct copy_entry *
|
|
|
|
|
get_entry_and_kill_aliases(struct copy_prop_var_state *state,
|
2018-03-27 20:57:30 -07:00
|
|
|
nir_deref_instr *deref,
|
2016-12-09 22:31:26 -08:00
|
|
|
unsigned write_mask)
|
|
|
|
|
{
|
|
|
|
|
struct copy_entry *entry = NULL;
|
|
|
|
|
list_for_each_entry_safe(struct copy_entry, iter, &state->copies, link) {
|
|
|
|
|
if (!iter->src.is_ssa) {
|
|
|
|
|
/* If this write aliases the source of some entry, get rid of it */
|
|
|
|
|
if (compare_derefs(iter->src.deref, deref) & derefs_may_alias_bit) {
|
|
|
|
|
copy_entry_remove(state, iter);
|
|
|
|
|
continue;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
enum deref_compare_result comp = compare_derefs(iter->dst, deref);
|
|
|
|
|
/* This is a store operation. If we completely overwrite some value, we
|
|
|
|
|
* want to delete any dead writes that may be present.
|
|
|
|
|
*/
|
|
|
|
|
if (comp & derefs_b_contains_a_bit)
|
|
|
|
|
remove_dead_writes(state, iter, write_mask);
|
|
|
|
|
|
|
|
|
|
if (comp & derefs_equal_bit) {
|
|
|
|
|
assert(entry == NULL);
|
|
|
|
|
entry = iter;
|
|
|
|
|
} else if (comp & derefs_may_alias_bit) {
|
|
|
|
|
copy_entry_remove(state, iter);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (entry == NULL)
|
|
|
|
|
entry = copy_entry_create(state, deref);
|
|
|
|
|
|
|
|
|
|
return entry;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static void
|
|
|
|
|
apply_barrier_for_modes(struct copy_prop_var_state *state,
|
|
|
|
|
nir_variable_mode modes)
|
|
|
|
|
{
|
|
|
|
|
list_for_each_entry_safe(struct copy_entry, iter, &state->copies, link) {
|
2018-03-27 20:57:30 -07:00
|
|
|
nir_variable *dst_var = nir_deref_instr_get_variable(iter->dst);
|
|
|
|
|
nir_variable *src_var = iter->src.is_ssa ? NULL :
|
|
|
|
|
nir_deref_instr_get_variable(iter->src.deref);
|
|
|
|
|
|
|
|
|
|
if ((dst_var->data.mode & modes) ||
|
|
|
|
|
(src_var && (src_var->data.mode & modes)))
|
2016-12-09 22:31:26 -08:00
|
|
|
copy_entry_remove(state, iter);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static void
|
|
|
|
|
store_to_entry(struct copy_prop_var_state *state, struct copy_entry *entry,
|
|
|
|
|
const struct value *value, unsigned write_mask,
|
|
|
|
|
nir_instr *store_instr)
|
|
|
|
|
{
|
|
|
|
|
entry->comps_may_be_read &= ~write_mask;
|
|
|
|
|
if (value->is_ssa) {
|
|
|
|
|
entry->src.is_ssa = true;
|
|
|
|
|
/* Only overwrite the written components */
|
|
|
|
|
for (unsigned i = 0; i < 4; i++) {
|
|
|
|
|
if (write_mask & (1 << i)) {
|
|
|
|
|
entry->store_instr[i] = store_instr;
|
|
|
|
|
entry->src.ssa[i] = value->ssa[i];
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
} else {
|
|
|
|
|
/* Non-ssa stores always write everything */
|
|
|
|
|
entry->src.is_ssa = false;
|
|
|
|
|
entry->src.deref = value->deref;
|
|
|
|
|
for (unsigned i = 0; i < 4; i++)
|
|
|
|
|
entry->store_instr[i] = store_instr;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Do a "load" from an SSA-based entry return it in "value" as a value with a
|
|
|
|
|
* single SSA def. Because an entry could reference up to 4 different SSA
|
|
|
|
|
* defs, a vecN operation may be inserted to combine them into a single SSA
|
|
|
|
|
* def before handing it back to the caller. If the load instruction is no
|
|
|
|
|
* longer needed, it is removed and nir_instr::block is set to NULL. (It is
|
|
|
|
|
* possible, in some cases, for the load to be used in the vecN operation in
|
|
|
|
|
* which case it isn't deleted.)
|
|
|
|
|
*/
|
|
|
|
|
static bool
|
|
|
|
|
load_from_ssa_entry_value(struct copy_prop_var_state *state,
|
|
|
|
|
struct copy_entry *entry,
|
|
|
|
|
nir_builder *b, nir_intrinsic_instr *intrin,
|
|
|
|
|
struct value *value)
|
|
|
|
|
{
|
|
|
|
|
*value = entry->src;
|
|
|
|
|
assert(value->is_ssa);
|
|
|
|
|
|
2018-03-27 20:57:30 -07:00
|
|
|
const struct glsl_type *type = entry->dst->type;
|
2016-12-09 22:31:26 -08:00
|
|
|
unsigned num_components = glsl_get_vector_elements(type);
|
|
|
|
|
|
|
|
|
|
uint8_t available = 0;
|
|
|
|
|
bool all_same = true;
|
|
|
|
|
for (unsigned i = 0; i < num_components; i++) {
|
|
|
|
|
if (value->ssa[i])
|
|
|
|
|
available |= (1 << i);
|
|
|
|
|
|
|
|
|
|
if (value->ssa[i] != value->ssa[0])
|
|
|
|
|
all_same = false;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (all_same) {
|
|
|
|
|
/* Our work here is done */
|
2018-03-16 09:52:04 -07:00
|
|
|
b->cursor = nir_instr_remove(&intrin->instr);
|
2016-12-09 22:31:26 -08:00
|
|
|
intrin->instr.block = NULL;
|
|
|
|
|
return true;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (available != (1 << num_components) - 1 &&
|
2018-03-27 20:57:30 -07:00
|
|
|
intrin->intrinsic == nir_intrinsic_load_deref &&
|
2016-12-09 22:31:26 -08:00
|
|
|
(available & nir_ssa_def_components_read(&intrin->dest.ssa)) == 0) {
|
|
|
|
|
/* If none of the components read are available as SSA values, then we
|
|
|
|
|
* should just bail. Otherwise, we would end up replacing the uses of
|
2018-03-27 20:57:30 -07:00
|
|
|
* the load_deref a vecN() that just gathers up its components.
|
2016-12-09 22:31:26 -08:00
|
|
|
*/
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
b->cursor = nir_after_instr(&intrin->instr);
|
|
|
|
|
|
|
|
|
|
nir_ssa_def *load_def =
|
2018-03-27 20:57:30 -07:00
|
|
|
intrin->intrinsic == nir_intrinsic_load_deref ? &intrin->dest.ssa : NULL;
|
2016-12-09 22:31:26 -08:00
|
|
|
|
|
|
|
|
bool keep_intrin = false;
|
|
|
|
|
nir_ssa_def *comps[4];
|
|
|
|
|
for (unsigned i = 0; i < num_components; i++) {
|
|
|
|
|
if (value->ssa[i]) {
|
|
|
|
|
comps[i] = nir_channel(b, value->ssa[i], i);
|
|
|
|
|
} else {
|
|
|
|
|
/* We don't have anything for this component in our
|
|
|
|
|
* list. Just re-use a channel from the load.
|
|
|
|
|
*/
|
|
|
|
|
if (load_def == NULL)
|
2018-03-27 20:57:30 -07:00
|
|
|
load_def = nir_load_deref(b, entry->dst);
|
2016-12-09 22:31:26 -08:00
|
|
|
|
|
|
|
|
if (load_def->parent_instr == &intrin->instr)
|
|
|
|
|
keep_intrin = true;
|
|
|
|
|
|
|
|
|
|
comps[i] = nir_channel(b, load_def, i);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
nir_ssa_def *vec = nir_vec(b, comps, num_components);
|
|
|
|
|
for (unsigned i = 0; i < num_components; i++)
|
|
|
|
|
value->ssa[i] = vec;
|
|
|
|
|
|
|
|
|
|
if (!keep_intrin) {
|
|
|
|
|
/* Removing this instruction should not touch the cursor because we
|
|
|
|
|
* created the cursor after the intrinsic and have added at least one
|
|
|
|
|
* instruction (the vec) since then.
|
|
|
|
|
*/
|
|
|
|
|
assert(b->cursor.instr != &intrin->instr);
|
|
|
|
|
nir_instr_remove(&intrin->instr);
|
|
|
|
|
intrin->instr.block = NULL;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return true;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* Specialize the wildcards in a deref chain
|
|
|
|
|
*
|
|
|
|
|
* This function returns a deref chain identical to \param deref except that
|
|
|
|
|
* some of its wildcards are replaced with indices from \param specific. The
|
|
|
|
|
* process is guided by \param guide which references the same type as \param
|
|
|
|
|
* specific but has the same wildcard array lengths as \param deref.
|
|
|
|
|
*/
|
2018-03-27 20:57:30 -07:00
|
|
|
static nir_deref_instr *
|
|
|
|
|
specialize_wildcards(nir_builder *b,
|
|
|
|
|
nir_deref_path *deref,
|
|
|
|
|
nir_deref_path *guide,
|
|
|
|
|
nir_deref_path *specific)
|
2016-12-09 22:31:26 -08:00
|
|
|
{
|
2018-03-27 20:57:30 -07:00
|
|
|
nir_deref_instr **deref_p = &deref->path[1];
|
|
|
|
|
nir_deref_instr **guide_p = &guide->path[1];
|
|
|
|
|
nir_deref_instr **spec_p = &specific->path[1];
|
|
|
|
|
nir_deref_instr *ret_tail = deref->path[0];
|
|
|
|
|
for (; *deref_p; deref_p++) {
|
|
|
|
|
if ((*deref_p)->deref_type == nir_deref_type_array_wildcard) {
|
|
|
|
|
/* This is where things get tricky. We have to search through
|
|
|
|
|
* the entry deref to find its corresponding wildcard and fill
|
|
|
|
|
* this slot in with the value from the src.
|
|
|
|
|
*/
|
|
|
|
|
while (*guide_p &&
|
|
|
|
|
(*guide_p)->deref_type != nir_deref_type_array_wildcard) {
|
|
|
|
|
guide_p++;
|
|
|
|
|
spec_p++;
|
2016-12-09 22:31:26 -08:00
|
|
|
}
|
2018-03-27 20:57:30 -07:00
|
|
|
assert(*guide_p && *spec_p);
|
2016-12-09 22:31:26 -08:00
|
|
|
|
2018-03-27 20:57:30 -07:00
|
|
|
ret_tail = nir_build_deref_follower(b, ret_tail, *spec_p);
|
2016-12-09 22:31:26 -08:00
|
|
|
|
2018-03-27 20:57:30 -07:00
|
|
|
guide_p++;
|
|
|
|
|
spec_p++;
|
|
|
|
|
} else {
|
|
|
|
|
ret_tail = nir_build_deref_follower(b, ret_tail, *deref_p);
|
2016-12-09 22:31:26 -08:00
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
2018-03-27 20:57:30 -07:00
|
|
|
return ret_tail;
|
2016-12-09 22:31:26 -08:00
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Do a "load" from an deref-based entry return it in "value" as a value. The
|
|
|
|
|
* deref returned in "value" will always be a fresh copy so the caller can
|
|
|
|
|
* steal it and assign it to the instruction directly without copying it
|
|
|
|
|
* again.
|
|
|
|
|
*/
|
|
|
|
|
static bool
|
|
|
|
|
load_from_deref_entry_value(struct copy_prop_var_state *state,
|
|
|
|
|
struct copy_entry *entry,
|
|
|
|
|
nir_builder *b, nir_intrinsic_instr *intrin,
|
2018-03-27 20:57:30 -07:00
|
|
|
nir_deref_instr *src, struct value *value)
|
2016-12-09 22:31:26 -08:00
|
|
|
{
|
|
|
|
|
*value = entry->src;
|
|
|
|
|
|
2018-03-27 20:57:30 -07:00
|
|
|
b->cursor = nir_instr_remove(&intrin->instr);
|
2016-12-09 22:31:26 -08:00
|
|
|
|
2018-03-27 20:57:30 -07:00
|
|
|
nir_deref_path entry_dst_path, src_path;
|
|
|
|
|
nir_deref_path_init(&entry_dst_path, entry->dst, state->mem_ctx);
|
|
|
|
|
nir_deref_path_init(&src_path, src, state->mem_ctx);
|
|
|
|
|
|
|
|
|
|
bool need_to_specialize_wildcards = false;
|
|
|
|
|
nir_deref_instr **entry_p = &entry_dst_path.path[1];
|
|
|
|
|
nir_deref_instr **src_p = &src_path.path[1];
|
|
|
|
|
while (*entry_p && *src_p) {
|
|
|
|
|
nir_deref_instr *entry_tail = *entry_p++;
|
|
|
|
|
nir_deref_instr *src_tail = *src_p++;
|
|
|
|
|
|
|
|
|
|
if (src_tail->deref_type == nir_deref_type_array &&
|
|
|
|
|
entry_tail->deref_type == nir_deref_type_array_wildcard)
|
|
|
|
|
need_to_specialize_wildcards = true;
|
2016-12-09 22:31:26 -08:00
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* If the entry deref is longer than the source deref then it refers to a
|
|
|
|
|
* smaller type and we can't source from it.
|
|
|
|
|
*/
|
2018-03-27 20:57:30 -07:00
|
|
|
assert(*entry_p == NULL);
|
2016-12-09 22:31:26 -08:00
|
|
|
|
|
|
|
|
if (need_to_specialize_wildcards) {
|
|
|
|
|
/* The entry has some wildcards that are not in src. This means we need
|
|
|
|
|
* to construct a new deref based on the entry but using the wildcards
|
|
|
|
|
* from the source and guided by the entry dst. Oof.
|
|
|
|
|
*/
|
2018-03-27 20:57:30 -07:00
|
|
|
nir_deref_path entry_src_path;
|
|
|
|
|
nir_deref_path_init(&entry_src_path, entry->src.deref, state->mem_ctx);
|
|
|
|
|
value->deref = specialize_wildcards(b, &entry_src_path,
|
|
|
|
|
&entry_dst_path, &src_path);
|
|
|
|
|
nir_deref_path_finish(&entry_src_path);
|
2016-12-09 22:31:26 -08:00
|
|
|
}
|
|
|
|
|
|
2018-03-27 20:57:30 -07:00
|
|
|
/* If our source deref is longer than the entry deref, that's ok because
|
|
|
|
|
* it just means the entry deref needs to be extended a bit.
|
|
|
|
|
*/
|
|
|
|
|
while (*src_p) {
|
|
|
|
|
nir_deref_instr *src_tail = *src_p++;
|
|
|
|
|
value->deref = nir_build_deref_follower(b, value->deref, src_tail);
|
2016-12-09 22:31:26 -08:00
|
|
|
}
|
|
|
|
|
|
2018-03-27 20:57:30 -07:00
|
|
|
nir_deref_path_finish(&entry_dst_path);
|
|
|
|
|
nir_deref_path_finish(&src_path);
|
2016-12-09 22:31:26 -08:00
|
|
|
|
|
|
|
|
return true;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static bool
|
|
|
|
|
try_load_from_entry(struct copy_prop_var_state *state, struct copy_entry *entry,
|
|
|
|
|
nir_builder *b, nir_intrinsic_instr *intrin,
|
2018-03-27 20:57:30 -07:00
|
|
|
nir_deref_instr *src, struct value *value)
|
2016-12-09 22:31:26 -08:00
|
|
|
{
|
|
|
|
|
if (entry == NULL)
|
|
|
|
|
return false;
|
|
|
|
|
|
|
|
|
|
if (entry->src.is_ssa) {
|
|
|
|
|
return load_from_ssa_entry_value(state, entry, b, intrin, value);
|
|
|
|
|
} else {
|
|
|
|
|
return load_from_deref_entry_value(state, entry, b, intrin, src, value);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static void
|
|
|
|
|
copy_prop_vars_block(struct copy_prop_var_state *state,
|
|
|
|
|
nir_builder *b, nir_block *block)
|
|
|
|
|
{
|
|
|
|
|
/* Start each block with a blank slate */
|
|
|
|
|
list_for_each_entry_safe(struct copy_entry, iter, &state->copies, link)
|
|
|
|
|
copy_entry_remove(state, iter);
|
|
|
|
|
|
|
|
|
|
nir_foreach_instr_safe(instr, block) {
|
|
|
|
|
if (instr->type != nir_instr_type_intrinsic)
|
|
|
|
|
continue;
|
|
|
|
|
|
|
|
|
|
nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
|
|
|
|
|
switch (intrin->intrinsic) {
|
|
|
|
|
case nir_intrinsic_barrier:
|
|
|
|
|
case nir_intrinsic_memory_barrier:
|
|
|
|
|
/* If we hit a barrier, we need to trash everything that may possibly
|
|
|
|
|
* be accessible to another thread. Locals, globals, and things of
|
|
|
|
|
* the like are safe, however.
|
|
|
|
|
*/
|
|
|
|
|
apply_barrier_for_modes(state, ~(nir_var_local | nir_var_global |
|
|
|
|
|
nir_var_shader_in | nir_var_uniform));
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case nir_intrinsic_emit_vertex:
|
|
|
|
|
case nir_intrinsic_emit_vertex_with_counter:
|
|
|
|
|
apply_barrier_for_modes(state, nir_var_shader_out);
|
|
|
|
|
break;
|
|
|
|
|
|
2018-03-27 20:57:30 -07:00
|
|
|
case nir_intrinsic_load_deref: {
|
|
|
|
|
nir_deref_instr *src = nir_src_as_deref(intrin->src[0]);
|
2016-12-09 22:31:26 -08:00
|
|
|
|
|
|
|
|
uint8_t comps_read = nir_ssa_def_components_read(&intrin->dest.ssa);
|
|
|
|
|
mark_aliased_entries_as_read(state, src, comps_read);
|
|
|
|
|
|
|
|
|
|
struct copy_entry *src_entry =
|
|
|
|
|
lookup_entry_for_deref(state, src, derefs_a_contains_b_bit);
|
|
|
|
|
struct value value;
|
|
|
|
|
if (try_load_from_entry(state, src_entry, b, intrin, src, &value)) {
|
|
|
|
|
if (value.is_ssa) {
|
|
|
|
|
/* lookup_load has already ensured that we get a single SSA
|
|
|
|
|
* value that has all of the channels. We just have to do the
|
|
|
|
|
* rewrite operation.
|
|
|
|
|
*/
|
|
|
|
|
if (intrin->instr.block) {
|
|
|
|
|
/* The lookup left our instruction in-place. This means it
|
|
|
|
|
* must have used it to vec up a bunch of different sources.
|
|
|
|
|
* We need to be careful when rewriting uses so we don't
|
|
|
|
|
* rewrite the vecN itself.
|
|
|
|
|
*/
|
|
|
|
|
nir_ssa_def_rewrite_uses_after(&intrin->dest.ssa,
|
|
|
|
|
nir_src_for_ssa(value.ssa[0]),
|
|
|
|
|
value.ssa[0]->parent_instr);
|
|
|
|
|
} else {
|
|
|
|
|
nir_ssa_def_rewrite_uses(&intrin->dest.ssa,
|
|
|
|
|
nir_src_for_ssa(value.ssa[0]));
|
|
|
|
|
}
|
|
|
|
|
} else {
|
|
|
|
|
/* We're turning it into a load of a different variable */
|
2018-03-27 20:57:30 -07:00
|
|
|
intrin->src[0] = nir_src_for_ssa(&value.deref->dest.ssa);
|
2016-12-09 22:31:26 -08:00
|
|
|
|
|
|
|
|
/* Put it back in again. */
|
|
|
|
|
nir_builder_instr_insert(b, instr);
|
|
|
|
|
|
|
|
|
|
value.is_ssa = true;
|
|
|
|
|
for (unsigned i = 0; i < intrin->num_components; i++)
|
|
|
|
|
value.ssa[i] = &intrin->dest.ssa;
|
|
|
|
|
}
|
|
|
|
|
state->progress = true;
|
|
|
|
|
} else {
|
|
|
|
|
value.is_ssa = true;
|
|
|
|
|
for (unsigned i = 0; i < intrin->num_components; i++)
|
|
|
|
|
value.ssa[i] = &intrin->dest.ssa;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Now that we have a value, we're going to store it back so that we
|
|
|
|
|
* have the right value next time we come looking for it. In order
|
|
|
|
|
* to do this, we need an exact match, not just something that
|
|
|
|
|
* contains what we're looking for.
|
|
|
|
|
*/
|
|
|
|
|
struct copy_entry *store_entry =
|
|
|
|
|
lookup_entry_for_deref(state, src, derefs_equal_bit);
|
|
|
|
|
if (!store_entry)
|
|
|
|
|
store_entry = copy_entry_create(state, src);
|
|
|
|
|
|
|
|
|
|
/* Set up a store to this entry with the value of the load. This way
|
|
|
|
|
* we can potentially remove subsequent loads. However, we use a
|
|
|
|
|
* NULL instruction so we don't try and delete the load on a
|
|
|
|
|
* subsequent store.
|
|
|
|
|
*/
|
|
|
|
|
store_to_entry(state, store_entry, &value,
|
|
|
|
|
((1 << intrin->num_components) - 1), NULL);
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
|
2018-03-27 20:57:30 -07:00
|
|
|
case nir_intrinsic_store_deref: {
|
2016-12-09 22:31:26 -08:00
|
|
|
struct value value = {
|
|
|
|
|
.is_ssa = true
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
for (unsigned i = 0; i < intrin->num_components; i++)
|
2018-03-27 20:57:30 -07:00
|
|
|
value.ssa[i] = intrin->src[1].ssa;
|
2016-12-09 22:31:26 -08:00
|
|
|
|
2018-03-27 20:57:30 -07:00
|
|
|
nir_deref_instr *dst = nir_src_as_deref(intrin->src[0]);
|
2016-12-09 22:31:26 -08:00
|
|
|
unsigned wrmask = nir_intrinsic_write_mask(intrin);
|
|
|
|
|
struct copy_entry *entry =
|
|
|
|
|
get_entry_and_kill_aliases(state, dst, wrmask);
|
|
|
|
|
store_to_entry(state, entry, &value, wrmask, &intrin->instr);
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
|
2018-03-27 20:57:30 -07:00
|
|
|
case nir_intrinsic_copy_deref: {
|
|
|
|
|
nir_deref_instr *dst = nir_src_as_deref(intrin->src[0]);
|
|
|
|
|
nir_deref_instr *src = nir_src_as_deref(intrin->src[1]);
|
2016-12-09 22:31:26 -08:00
|
|
|
|
|
|
|
|
if (compare_derefs(src, dst) & derefs_equal_bit) {
|
|
|
|
|
/* This is a no-op self-copy. Get rid of it */
|
|
|
|
|
nir_instr_remove(instr);
|
|
|
|
|
continue;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
mark_aliased_entries_as_read(state, src, 0xf);
|
|
|
|
|
|
|
|
|
|
struct copy_entry *src_entry =
|
|
|
|
|
lookup_entry_for_deref(state, src, derefs_a_contains_b_bit);
|
|
|
|
|
struct value value;
|
|
|
|
|
if (try_load_from_entry(state, src_entry, b, intrin, src, &value)) {
|
|
|
|
|
if (value.is_ssa) {
|
2018-03-27 20:57:30 -07:00
|
|
|
nir_store_deref(b, dst, value.ssa[0], 0xf);
|
2016-12-09 22:31:26 -08:00
|
|
|
intrin = nir_instr_as_intrinsic(nir_builder_last_instr(b));
|
|
|
|
|
} else {
|
|
|
|
|
/* If this would be a no-op self-copy, don't bother. */
|
|
|
|
|
if (compare_derefs(value.deref, dst) & derefs_equal_bit)
|
|
|
|
|
continue;
|
|
|
|
|
|
|
|
|
|
/* Just turn it into a copy of a different deref */
|
2018-03-27 20:57:30 -07:00
|
|
|
intrin->src[1] = nir_src_for_ssa(&value.deref->dest.ssa);
|
2016-12-09 22:31:26 -08:00
|
|
|
|
|
|
|
|
/* Put it back in again. */
|
|
|
|
|
nir_builder_instr_insert(b, instr);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
state->progress = true;
|
|
|
|
|
} else {
|
|
|
|
|
value = (struct value) {
|
|
|
|
|
.is_ssa = false,
|
2017-01-08 09:02:38 -08:00
|
|
|
{ .deref = src },
|
2016-12-09 22:31:26 -08:00
|
|
|
};
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
struct copy_entry *dst_entry =
|
|
|
|
|
get_entry_and_kill_aliases(state, dst, 0xf);
|
|
|
|
|
store_to_entry(state, dst_entry, &value, 0xf, &intrin->instr);
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
default:
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
bool
|
|
|
|
|
nir_opt_copy_prop_vars(nir_shader *shader)
|
|
|
|
|
{
|
|
|
|
|
struct copy_prop_var_state state;
|
|
|
|
|
|
|
|
|
|
state.shader = shader;
|
|
|
|
|
state.mem_ctx = ralloc_context(NULL);
|
|
|
|
|
list_inithead(&state.copies);
|
|
|
|
|
list_inithead(&state.copy_free_list);
|
|
|
|
|
|
|
|
|
|
bool global_progress = false;
|
|
|
|
|
nir_foreach_function(function, shader) {
|
|
|
|
|
if (!function->impl)
|
|
|
|
|
continue;
|
|
|
|
|
|
|
|
|
|
nir_builder b;
|
|
|
|
|
nir_builder_init(&b, function->impl);
|
|
|
|
|
|
|
|
|
|
state.progress = false;
|
|
|
|
|
nir_foreach_block(block, function->impl)
|
|
|
|
|
copy_prop_vars_block(&state, &b, block);
|
|
|
|
|
|
|
|
|
|
if (state.progress) {
|
|
|
|
|
nir_metadata_preserve(function->impl, nir_metadata_block_index |
|
|
|
|
|
nir_metadata_dominance);
|
|
|
|
|
global_progress = true;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
ralloc_free(state.mem_ctx);
|
|
|
|
|
|
|
|
|
|
return global_progress;
|
|
|
|
|
}
|