mesa/src/intel/vulkan/genX_query.c

518 lines
17 KiB
C
Raw Normal View History

/*
* Copyright © 2015 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include <assert.h>
#include <stdbool.h>
#include <string.h>
#include <unistd.h>
#include <fcntl.h>
#include "anv_private.h"
#include "genxml/gen_macros.h"
#include "genxml/genX_pack.h"
VkResult genX(CreateQueryPool)(
VkDevice _device,
const VkQueryPoolCreateInfo* pCreateInfo,
const VkAllocationCallbacks* pAllocator,
VkQueryPool* pQueryPool)
{
ANV_FROM_HANDLE(anv_device, device, _device);
struct anv_query_pool *pool;
VkResult result;
assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_QUERY_POOL_CREATE_INFO);
/* Query pool slots are made up of some number of 64-bit values packed
* tightly together. The first 64-bit value is always the "available" bit
* which is 0 when the query is unavailable and 1 when it is available.
* The 64-bit values that follow are determined by the type of query.
*/
uint32_t uint64s_per_slot = 1;
switch (pCreateInfo->queryType) {
case VK_QUERY_TYPE_OCCLUSION:
/* Occlusion queries have two values: begin and end. */
uint64s_per_slot += 2;
break;
case VK_QUERY_TYPE_TIMESTAMP:
/* Timestamps just have the one timestamp value */
uint64s_per_slot += 1;
break;
case VK_QUERY_TYPE_PIPELINE_STATISTICS:
return VK_ERROR_INCOMPATIBLE_DRIVER;
default:
assert(!"Invalid query type");
}
pool = vk_alloc2(&device->alloc, pAllocator, sizeof(*pool), 8,
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
if (pool == NULL)
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
pool->type = pCreateInfo->queryType;
pool->stride = uint64s_per_slot * sizeof(uint64_t);
pool->slots = pCreateInfo->queryCount;
uint64_t size = pool->slots * pool->stride;
result = anv_bo_init_new(&pool->bo, device, size);
if (result != VK_SUCCESS)
goto fail;
pool->bo.map = anv_gem_mmap(device, pool->bo.gem_handle, 0, size, 0);
*pQueryPool = anv_query_pool_to_handle(pool);
return VK_SUCCESS;
fail:
vk_free2(&device->alloc, pAllocator, pool);
return result;
}
void genX(DestroyQueryPool)(
VkDevice _device,
VkQueryPool _pool,
const VkAllocationCallbacks* pAllocator)
{
ANV_FROM_HANDLE(anv_device, device, _device);
ANV_FROM_HANDLE(anv_query_pool, pool, _pool);
if (!pool)
return;
anv_gem_munmap(pool->bo.map, pool->bo.size);
anv_gem_close(device, pool->bo.gem_handle);
vk_free2(&device->alloc, pAllocator, pool);
}
static void
cpu_write_query_result(void *dst_slot, VkQueryResultFlags flags,
uint32_t value_index, uint64_t result)
{
if (flags & VK_QUERY_RESULT_64_BIT) {
uint64_t *dst64 = dst_slot;
dst64[value_index] = result;
} else {
uint32_t *dst32 = dst_slot;
dst32[value_index] = result;
}
}
VkResult genX(GetQueryPoolResults)(
VkDevice _device,
VkQueryPool queryPool,
uint32_t firstQuery,
uint32_t queryCount,
size_t dataSize,
void* pData,
VkDeviceSize stride,
VkQueryResultFlags flags)
{
ANV_FROM_HANDLE(anv_device, device, _device);
ANV_FROM_HANDLE(anv_query_pool, pool, queryPool);
int64_t timeout = INT64_MAX;
int ret;
assert(pool->type == VK_QUERY_TYPE_OCCLUSION ||
pool->type == VK_QUERY_TYPE_TIMESTAMP);
if (pData == NULL)
return VK_SUCCESS;
if (flags & VK_QUERY_RESULT_WAIT_BIT) {
ret = anv_gem_wait(device, pool->bo.gem_handle, &timeout);
if (ret == -1) {
/* We don't know the real error. */
return vk_errorf(VK_ERROR_OUT_OF_DEVICE_MEMORY,
"gem_wait failed %m");
}
}
void *data_end = pData + dataSize;
if (!device->info.has_llc) {
uint64_t offset = firstQuery * pool->stride;
uint64_t size = queryCount * pool->stride;
anv_invalidate_range(pool->bo.map + offset,
MIN2(size, pool->bo.size - offset));
}
VkResult status = VK_SUCCESS;
for (uint32_t i = 0; i < queryCount; i++) {
uint64_t *slot = pool->bo.map + (firstQuery + i) * pool->stride;
/* Availability is always at the start of the slot */
bool available = slot[0];
/* From the Vulkan 1.0.42 spec:
*
* "If VK_QUERY_RESULT_WAIT_BIT and VK_QUERY_RESULT_PARTIAL_BIT are
* both not set then no result values are written to pData for
* queries that are in the unavailable state at the time of the call,
* and vkGetQueryPoolResults returns VK_NOT_READY. However,
* availability state is still written to pData for those queries if
* VK_QUERY_RESULT_WITH_AVAILABILITY_BIT is set."
*/
bool write_results = available || (flags & VK_QUERY_RESULT_PARTIAL_BIT);
if (write_results) {
switch (pool->type) {
case VK_QUERY_TYPE_OCCLUSION: {
cpu_write_query_result(pData, flags, 0, slot[2] - slot[1]);
break;
}
case VK_QUERY_TYPE_PIPELINE_STATISTICS:
unreachable("pipeline stats not supported");
case VK_QUERY_TYPE_TIMESTAMP: {
cpu_write_query_result(pData, flags, 0, slot[1]);
break;
}
default:
unreachable("invalid pool type");
}
} else {
status = VK_NOT_READY;
}
if (flags & VK_QUERY_RESULT_WITH_AVAILABILITY_BIT)
cpu_write_query_result(pData, flags, 1, available);
pData += stride;
if (pData >= data_end)
break;
}
return status;
}
static void
emit_ps_depth_count(struct anv_cmd_buffer *cmd_buffer,
struct anv_bo *bo, uint32_t offset)
{
anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
pc.DestinationAddressType = DAT_PPGTT;
pc.PostSyncOperation = WritePSDepthCount;
pc.DepthStallEnable = true;
pc.Address = (struct anv_address) { bo, offset };
if (GEN_GEN == 9 && cmd_buffer->device->info.gt == 4)
pc.CommandStreamerStallEnable = true;
}
}
static void
emit_query_availability(struct anv_cmd_buffer *cmd_buffer,
struct anv_bo *bo, uint32_t offset)
{
anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
pc.DestinationAddressType = DAT_PPGTT;
pc.PostSyncOperation = WriteImmediateData;
pc.Address = (struct anv_address) { bo, offset };
pc.ImmediateData = 1;
}
}
void genX(CmdResetQueryPool)(
VkCommandBuffer commandBuffer,
VkQueryPool queryPool,
uint32_t firstQuery,
uint32_t queryCount)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
ANV_FROM_HANDLE(anv_query_pool, pool, queryPool);
for (uint32_t i = 0; i < queryCount; i++) {
anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), sdm) {
sdm.Address = (struct anv_address) {
.bo = &pool->bo,
.offset = (firstQuery + i) * pool->stride,
};
sdm.DataDWord0 = 0;
sdm.DataDWord1 = 0;
}
}
}
void genX(CmdBeginQuery)(
VkCommandBuffer commandBuffer,
VkQueryPool queryPool,
uint32_t query,
VkQueryControlFlags flags)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
ANV_FROM_HANDLE(anv_query_pool, pool, queryPool);
/* Workaround: When meta uses the pipeline with the VS disabled, it seems
* that the pipelining of the depth write breaks. What we see is that
* samples from the render pass clear leaks into the first query
* immediately after the clear. Doing a pipecontrol with a post-sync
* operation and DepthStallEnable seems to work around the issue.
*/
if (cmd_buffer->state.need_query_wa) {
cmd_buffer->state.need_query_wa = false;
anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
pc.DepthCacheFlushEnable = true;
pc.DepthStallEnable = true;
}
}
switch (pool->type) {
case VK_QUERY_TYPE_OCCLUSION:
emit_ps_depth_count(cmd_buffer, &pool->bo, query * pool->stride + 8);
break;
case VK_QUERY_TYPE_PIPELINE_STATISTICS:
default:
unreachable("");
}
}
void genX(CmdEndQuery)(
VkCommandBuffer commandBuffer,
VkQueryPool queryPool,
uint32_t query)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
ANV_FROM_HANDLE(anv_query_pool, pool, queryPool);
switch (pool->type) {
case VK_QUERY_TYPE_OCCLUSION:
emit_ps_depth_count(cmd_buffer, &pool->bo, query * pool->stride + 16);
emit_query_availability(cmd_buffer, &pool->bo, query * pool->stride);
break;
case VK_QUERY_TYPE_PIPELINE_STATISTICS:
default:
unreachable("");
}
}
#define TIMESTAMP 0x2358
void genX(CmdWriteTimestamp)(
VkCommandBuffer commandBuffer,
VkPipelineStageFlagBits pipelineStage,
VkQueryPool queryPool,
uint32_t query)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
ANV_FROM_HANDLE(anv_query_pool, pool, queryPool);
uint32_t offset = query * pool->stride;
assert(pool->type == VK_QUERY_TYPE_TIMESTAMP);
switch (pipelineStage) {
case VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT:
anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_REGISTER_MEM), srm) {
srm.RegisterAddress = TIMESTAMP;
srm.MemoryAddress = (struct anv_address) { &pool->bo, offset + 8 };
}
anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_REGISTER_MEM), srm) {
srm.RegisterAddress = TIMESTAMP + 4;
srm.MemoryAddress = (struct anv_address) { &pool->bo, offset + 12 };
}
break;
default:
/* Everything else is bottom-of-pipe */
anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
pc.DestinationAddressType = DAT_PPGTT;
pc.PostSyncOperation = WriteTimestamp;
pc.Address = (struct anv_address) { &pool->bo, offset + 8 };
if (GEN_GEN == 9 && cmd_buffer->device->info.gt == 4)
pc.CommandStreamerStallEnable = true;
}
break;
}
emit_query_availability(cmd_buffer, &pool->bo, offset);
}
#if GEN_GEN > 7 || GEN_IS_HASWELL
#define alu_opcode(v) __gen_uint((v), 20, 31)
#define alu_operand1(v) __gen_uint((v), 10, 19)
#define alu_operand2(v) __gen_uint((v), 0, 9)
#define alu(opcode, operand1, operand2) \
alu_opcode(opcode) | alu_operand1(operand1) | alu_operand2(operand2)
#define OPCODE_NOOP 0x000
#define OPCODE_LOAD 0x080
#define OPCODE_LOADINV 0x480
#define OPCODE_LOAD0 0x081
#define OPCODE_LOAD1 0x481
#define OPCODE_ADD 0x100
#define OPCODE_SUB 0x101
#define OPCODE_AND 0x102
#define OPCODE_OR 0x103
#define OPCODE_XOR 0x104
#define OPCODE_STORE 0x180
#define OPCODE_STOREINV 0x580
#define OPERAND_R0 0x00
#define OPERAND_R1 0x01
#define OPERAND_R2 0x02
#define OPERAND_R3 0x03
#define OPERAND_R4 0x04
#define OPERAND_SRCA 0x20
#define OPERAND_SRCB 0x21
#define OPERAND_ACCU 0x31
#define OPERAND_ZF 0x32
#define OPERAND_CF 0x33
#define CS_GPR(n) (0x2600 + (n) * 8)
static void
emit_load_alu_reg_u64(struct anv_batch *batch, uint32_t reg,
struct anv_bo *bo, uint32_t offset)
{
anv_batch_emit(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
lrm.RegisterAddress = reg,
lrm.MemoryAddress = (struct anv_address) { bo, offset };
}
anv_batch_emit(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
lrm.RegisterAddress = reg + 4;
lrm.MemoryAddress = (struct anv_address) { bo, offset + 4 };
}
}
static void
gpu_write_query_result(struct anv_batch *batch,
struct anv_buffer *dst_buffer, uint32_t dst_offset,
VkQueryResultFlags flags,
uint32_t value_index, uint32_t reg)
{
if (flags & VK_QUERY_RESULT_64_BIT)
dst_offset += value_index * 8;
else
dst_offset += value_index * 4;
anv_batch_emit(batch, GENX(MI_STORE_REGISTER_MEM), srm) {
srm.RegisterAddress = reg;
srm.MemoryAddress = (struct anv_address) {
.bo = dst_buffer->bo,
.offset = dst_buffer->offset + dst_offset,
};
}
if (flags & VK_QUERY_RESULT_64_BIT) {
anv_batch_emit(batch, GENX(MI_STORE_REGISTER_MEM), srm) {
srm.RegisterAddress = reg + 4;
srm.MemoryAddress = (struct anv_address) {
.bo = dst_buffer->bo,
.offset = dst_buffer->offset + dst_offset + 4,
};
}
}
}
static void
compute_query_result(struct anv_batch *batch, uint32_t dst_reg,
struct anv_bo *bo, uint32_t offset)
{
emit_load_alu_reg_u64(batch, CS_GPR(0), bo, offset);
emit_load_alu_reg_u64(batch, CS_GPR(1), bo, offset + 8);
/* FIXME: We need to clamp the result for 32 bit. */
uint32_t *dw = anv_batch_emitn(batch, 5, GENX(MI_MATH));
dw[1] = alu(OPCODE_LOAD, OPERAND_SRCA, OPERAND_R1);
dw[2] = alu(OPCODE_LOAD, OPERAND_SRCB, OPERAND_R0);
dw[3] = alu(OPCODE_SUB, 0, 0);
dw[4] = alu(OPCODE_STORE, dst_reg, OPERAND_ACCU);
}
void genX(CmdCopyQueryPoolResults)(
VkCommandBuffer commandBuffer,
VkQueryPool queryPool,
uint32_t firstQuery,
uint32_t queryCount,
VkBuffer destBuffer,
VkDeviceSize destOffset,
VkDeviceSize destStride,
VkQueryResultFlags flags)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
ANV_FROM_HANDLE(anv_query_pool, pool, queryPool);
ANV_FROM_HANDLE(anv_buffer, buffer, destBuffer);
uint32_t slot_offset, dst_offset;
if (flags & VK_QUERY_RESULT_WAIT_BIT) {
anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
pc.CommandStreamerStallEnable = true;
pc.StallAtPixelScoreboard = true;
}
}
for (uint32_t i = 0; i < queryCount; i++) {
slot_offset = (firstQuery + i) * pool->stride;
switch (pool->type) {
case VK_QUERY_TYPE_OCCLUSION:
compute_query_result(&cmd_buffer->batch, OPERAND_R2,
&pool->bo, slot_offset + 8);
gpu_write_query_result(&cmd_buffer->batch, buffer, destOffset,
flags, 0, CS_GPR(2));
break;
case VK_QUERY_TYPE_TIMESTAMP:
emit_load_alu_reg_u64(&cmd_buffer->batch,
CS_GPR(2), &pool->bo, slot_offset + 8);
gpu_write_query_result(&cmd_buffer->batch, buffer, destOffset,
flags, 0, CS_GPR(2));
break;
default:
unreachable("unhandled query type");
}
if (flags & VK_QUERY_RESULT_WITH_AVAILABILITY_BIT) {
emit_load_alu_reg_u64(&cmd_buffer->batch, CS_GPR(0),
&pool->bo, slot_offset);
gpu_write_query_result(&cmd_buffer->batch, buffer, destOffset,
flags, 1, CS_GPR(0));
}
destOffset += destStride;
}
}
#else
void genX(CmdCopyQueryPoolResults)(
VkCommandBuffer commandBuffer,
VkQueryPool queryPool,
uint32_t firstQuery,
uint32_t queryCount,
VkBuffer destBuffer,
VkDeviceSize destOffset,
VkDeviceSize destStride,
VkQueryResultFlags flags)
{
anv_finishme("Queries not yet supported on Ivy Bridge");
}
#endif