mesa/src/compiler/nir/nir_builder.c

88 lines
3.2 KiB
C
Raw Normal View History

/*
* Copyright © 2014-2015 Broadcom
* Copyright © 2021 Google
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include "nir_builder.h"
nir_ssa_def *
nir_builder_alu_instr_finish_and_insert(nir_builder *build, nir_alu_instr *instr)
{
const nir_op_info *op_info = &nir_op_infos[instr->op];
instr->exact = build->exact;
/* Guess the number of components the destination temporary should have
* based on our input sizes, if it's not fixed for the op.
*/
unsigned num_components = op_info->output_size;
if (num_components == 0) {
for (unsigned i = 0; i < op_info->num_inputs; i++) {
if (op_info->input_sizes[i] == 0)
num_components = MAX2(num_components,
instr->src[i].src.ssa->num_components);
}
}
assert(num_components != 0);
/* Figure out the bitwidth based on the source bitwidth if the instruction
* is variable-width.
*/
unsigned bit_size = nir_alu_type_get_type_size(op_info->output_type);
if (bit_size == 0) {
for (unsigned i = 0; i < op_info->num_inputs; i++) {
unsigned src_bit_size = instr->src[i].src.ssa->bit_size;
if (nir_alu_type_get_type_size(op_info->input_types[i]) == 0) {
if (bit_size)
assert(src_bit_size == bit_size);
else
bit_size = src_bit_size;
} else {
assert(src_bit_size ==
nir_alu_type_get_type_size(op_info->input_types[i]));
}
}
}
/* When in doubt, assume 32. */
if (bit_size == 0)
bit_size = 32;
/* Make sure we don't swizzle from outside of our source vector (like if a
* scalar value was passed into a multiply with a vector).
*/
for (unsigned i = 0; i < op_info->num_inputs; i++) {
for (unsigned j = instr->src[i].src.ssa->num_components;
j < NIR_MAX_VEC_COMPONENTS; j++) {
instr->src[i].swizzle[j] = instr->src[i].src.ssa->num_components - 1;
}
}
nir_ssa_dest_init(&instr->instr, &instr->dest.dest, num_components,
bit_size, NULL);
instr->dest.write_mask = (1 << num_components) - 1;
nir_builder_instr_insert(build, &instr->instr);
return &instr->dest.dest.ssa;
}