mesa/src/intel/compiler/brw_nir_rt.c

368 lines
13 KiB
C
Raw Normal View History

/*
* Copyright © 2020 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include "brw_nir_rt.h"
#include "brw_nir_rt_builder.h"
static bool
resize_deref(nir_builder *b, nir_deref_instr *deref,
unsigned num_components, unsigned bit_size)
{
assert(deref->dest.is_ssa);
if (deref->dest.ssa.num_components == num_components &&
deref->dest.ssa.bit_size == bit_size)
return false;
/* NIR requires array indices have to match the deref bit size */
if (deref->dest.ssa.bit_size != bit_size &&
(deref->deref_type == nir_deref_type_array ||
deref->deref_type == nir_deref_type_ptr_as_array)) {
b->cursor = nir_before_instr(&deref->instr);
assert(deref->arr.index.is_ssa);
nir_ssa_def *idx;
if (nir_src_is_const(deref->arr.index)) {
idx = nir_imm_intN_t(b, nir_src_as_int(deref->arr.index), bit_size);
} else {
idx = nir_i2i(b, deref->arr.index.ssa, bit_size);
}
nir_instr_rewrite_src(&deref->instr, &deref->arr.index,
nir_src_for_ssa(idx));
}
deref->dest.ssa.num_components = num_components;
deref->dest.ssa.bit_size = bit_size;
return true;
}
static bool
lower_rt_io_derefs(nir_shader *shader)
{
nir_function_impl *impl = nir_shader_get_entrypoint(shader);
bool progress = false;
unsigned num_shader_call_vars = 0;
nir_foreach_variable_with_modes(var, shader, nir_var_shader_call_data)
num_shader_call_vars++;
/* At most one payload is allowed because it's an input. Technically, this
* is also true for hit attribute variables. However, after we inline an
* any-hit shader into an intersection shader, we can end up with multiple
* hit attribute variables. They'll end up mapping to a cast from the same
* base pointer so this is fine.
*/
assert(num_shader_call_vars <= 1);
nir_builder b;
nir_builder_init(&b, impl);
b.cursor = nir_before_cf_list(&impl->body);
nir_ssa_def *call_data_addr = NULL;
if (num_shader_call_vars > 0) {
assert(shader->scratch_size >= BRW_BTD_STACK_CALLEE_DATA_SIZE);
call_data_addr =
brw_nir_rt_load_scratch(&b, BRW_BTD_STACK_CALL_DATA_PTR_OFFSET, 8,
1, 64);
progress = true;
}
nir_foreach_block(block, impl) {
nir_foreach_instr_safe(instr, block) {
if (instr->type != nir_instr_type_deref)
continue;
nir_deref_instr *deref = nir_instr_as_deref(instr);
if (nir_deref_mode_is(deref, nir_var_shader_call_data)) {
deref->modes = nir_var_function_temp;
if (deref->deref_type == nir_deref_type_var) {
b.cursor = nir_before_instr(&deref->instr);
nir_deref_instr *cast =
nir_build_deref_cast(&b, call_data_addr,
nir_var_function_temp,
deref->var->type, 0);
nir_ssa_def_rewrite_uses(&deref->dest.ssa,
nir_src_for_ssa(&cast->dest.ssa));
nir_instr_remove(&deref->instr);
progress = true;
}
}
/* We're going to lower all function_temp memory to scratch using
* 64-bit addresses. We need to resize all our derefs first or else
* nir_lower_explicit_io will have a fit.
*/
if (nir_deref_mode_is(deref, nir_var_function_temp) &&
resize_deref(&b, deref, 1, 64))
progress = true;
}
}
if (progress) {
nir_metadata_preserve(impl, nir_metadata_block_index |
nir_metadata_dominance);
} else {
nir_metadata_preserve(impl, nir_metadata_all);
}
return progress;
}
/** Lowers ray-tracing shader I/O and scratch access
*
* SPV_KHR_ray_tracing adds three new types of I/O, each of which need their
* own bit of special care:
*
* - Shader payload data: This is represented by the IncomingCallableData
* and IncomingRayPayload storage classes which are both represented by
* nir_var_call_data in NIR. There is at most one of these per-shader and
* they contain payload data passed down the stack from the parent shader
* when it calls executeCallable() or traceRay(). In our implementation,
* the actual storage lives in the calling shader's scratch space and we're
* passed a pointer to it.
*
* - Hit attribute data: This is represented by the HitAttribute storage
* class in SPIR-V and nir_var_ray_hit_attrib in NIR. For triangle
* geometry, it's supposed to contain two floats which are the barycentric
* coordinates. For AABS/procedural geometry, it contains the hit data
* written out by the intersection shader. In our implementation, it's a
* 64-bit pointer which points either to the u/v area of the relevant
* MemHit data structure or the space right after the HW ray stack entry.
*
* - Shader record buffer data: This allows read-only access to the data
* stored in the SBT right after the bindless shader handles. It's
* effectively a UBO with a magic address. Coming out of spirv_to_nir,
* we get a nir_intrinsic_load_shader_record_ptr which is cast to a
* nir_var_mem_global deref and all access happens through that. The
* shader_record_ptr system value is handled in brw_nir_lower_rt_intrinsics
* and we assume nir_lower_explicit_io is called elsewhere thanks to
* VK_KHR_buffer_device_address so there's really nothing to do here.
*
* We also handle lowering any remaining function_temp variables to scratch at
* this point. This gets rid of any remaining arrays and also takes care of
* the sending side of ray payloads where we pass pointers to a function_temp
* variable down the call stack.
*/
static void
lower_rt_io_and_scratch(nir_shader *nir)
{
/* First, we to ensure all the I/O variables have explicit types. Because
* these are shader-internal and don't come in from outside, they don't
* have an explicit memory layout and we have to assign them one.
*/
NIR_PASS_V(nir, nir_lower_vars_to_explicit_types,
nir_var_function_temp |
nir_var_shader_call_data,
glsl_get_natural_size_align_bytes);
/* Now patch any derefs to I/O vars */
NIR_PASS_V(nir, lower_rt_io_derefs);
/* Finally, lower any remaining function_temp and mem_constant access to
* 64-bit global memory access.
*/
NIR_PASS_V(nir, nir_lower_explicit_io,
nir_var_function_temp |
nir_var_mem_constant,
nir_address_format_64bit_global);
}
static void
build_terminate_ray(nir_builder *b)
{
nir_ssa_def *skip_closest_hit =
nir_i2b(b, nir_iand_imm(b, nir_load_ray_flags(b),
BRW_RT_RAY_FLAG_SKIP_CLOSEST_HIT_SHADER));
nir_push_if(b, skip_closest_hit);
{
/* The shader that calls traceRay() is unable to access any ray hit
* information except for that which is explicitly written into the ray
* payload by shaders invoked during the trace. If there's no closest-
* hit shader, then accepting the hit has no observable effect; it's
* just extra memory traffic for no reason.
*/
brw_nir_btd_return(b);
nir_jump(b, nir_jump_halt);
}
nir_push_else(b, NULL);
{
/* The closest hit shader is in the same shader group as the any-hit
* shader that we're currently in. We can get the address for its SBT
* handle by looking at the shader record pointer and subtracting the
* size of a SBT handle. The BINDLESS_SHADER_RECORD for a closest hit
* shader is the first one in the SBT handle.
*/
nir_ssa_def *closest_hit =
nir_iadd_imm(b, nir_load_shader_record_ptr(b),
-BRW_RT_SBT_HANDLE_SIZE);
brw_nir_rt_commit_hit(b);
brw_nir_btd_spawn(b, closest_hit);
nir_jump(b, nir_jump_halt);
}
nir_pop_if(b, NULL);
}
/** Lowers away ray walk intrinsics
*
* This lowers terminate_ray, ignore_ray_intersection, and the NIR-specific
* accept_ray_intersection intrinsics to the appropriate Intel-specific
* intrinsics.
*/
static bool
lower_ray_walk_intrinsics(nir_shader *shader,
const struct gen_device_info *devinfo)
{
assert(shader->info.stage == MESA_SHADER_ANY_HIT ||
shader->info.stage == MESA_SHADER_INTERSECTION);
nir_function_impl *impl = nir_shader_get_entrypoint(shader);
nir_builder b;
nir_builder_init(&b, impl);
bool progress = false;
nir_foreach_block_safe(block, impl) {
nir_foreach_instr_safe(instr, block) {
if (instr->type != nir_instr_type_intrinsic)
continue;
nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
switch (intrin->intrinsic) {
case nir_intrinsic_ignore_ray_intersection: {
b.cursor = nir_instr_remove(&intrin->instr);
/* We put the newly emitted code inside a dummy if because it's
* going to contain a jump instruction and we don't want to deal
* with that mess here. It'll get dealt with by our control-flow
* optimization passes.
*/
nir_push_if(&b, nir_imm_true(&b));
nir_intrinsic_instr *ray_continue =
nir_intrinsic_instr_create(b.shader,
nir_intrinsic_trace_ray_continue_intel);
nir_builder_instr_insert(&b, &ray_continue->instr);
nir_jump(&b, nir_jump_halt);
nir_pop_if(&b, NULL);
progress = true;
break;
}
case nir_intrinsic_accept_ray_intersection: {
b.cursor = nir_instr_remove(&intrin->instr);
nir_ssa_def *terminate =
nir_i2b(&b, nir_iand_imm(&b, nir_load_ray_flags(&b),
BRW_RT_RAY_FLAG_TERMINATE_ON_FIRST_HIT));
nir_push_if(&b, terminate);
{
build_terminate_ray(&b);
}
nir_push_else(&b, NULL);
{
nir_intrinsic_instr *ray_commit =
nir_intrinsic_instr_create(b.shader,
nir_intrinsic_trace_ray_commit_intel);
nir_builder_instr_insert(&b, &ray_commit->instr);
nir_jump(&b, nir_jump_halt);
}
nir_pop_if(&b, NULL);
progress = true;
break;
}
case nir_intrinsic_terminate_ray: {
b.cursor = nir_instr_remove(&intrin->instr);
build_terminate_ray(&b);
progress = true;
break;
}
default:
break;
}
}
}
if (progress) {
nir_metadata_preserve(impl, nir_metadata_none);
} else {
nir_metadata_preserve(impl, nir_metadata_all);
}
return progress;
}
void
brw_nir_lower_raygen(nir_shader *nir)
{
assert(nir->info.stage == MESA_SHADER_RAYGEN);
NIR_PASS_V(nir, brw_nir_lower_shader_returns);
lower_rt_io_and_scratch(nir);
}
void
brw_nir_lower_any_hit(nir_shader *nir, const struct gen_device_info *devinfo)
{
assert(nir->info.stage == MESA_SHADER_ANY_HIT);
NIR_PASS_V(nir, brw_nir_lower_shader_returns);
NIR_PASS_V(nir, lower_ray_walk_intrinsics, devinfo);
lower_rt_io_and_scratch(nir);
}
void
brw_nir_lower_closest_hit(nir_shader *nir)
{
assert(nir->info.stage == MESA_SHADER_CLOSEST_HIT);
NIR_PASS_V(nir, brw_nir_lower_shader_returns);
lower_rt_io_and_scratch(nir);
}
void
brw_nir_lower_miss(nir_shader *nir)
{
assert(nir->info.stage == MESA_SHADER_MISS);
NIR_PASS_V(nir, brw_nir_lower_shader_returns);
lower_rt_io_and_scratch(nir);
}
void
brw_nir_lower_callable(nir_shader *nir)
{
assert(nir->info.stage == MESA_SHADER_CALLABLE);
NIR_PASS_V(nir, brw_nir_lower_shader_returns);
lower_rt_io_and_scratch(nir);
}
void
brw_nir_lower_combined_intersection_any_hit(nir_shader *intersection,
const nir_shader *any_hit,
const struct gen_device_info *devinfo)
{
assert(intersection->info.stage == MESA_SHADER_INTERSECTION);
assert(any_hit == NULL || any_hit->info.stage == MESA_SHADER_ANY_HIT);
NIR_PASS_V(intersection, brw_nir_lower_shader_returns);
lower_rt_io_and_scratch(intersection);
}