2015-07-31 11:57:48 -07:00
|
|
|
/*
|
|
|
|
|
* Copyright © 2015 Intel Corporation
|
|
|
|
|
*
|
|
|
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
|
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
|
|
|
* to deal in the Software without restriction, including without limitation
|
|
|
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
|
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
|
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
|
|
|
*
|
|
|
|
|
* The above copyright notice and this permission notice (including the next
|
|
|
|
|
* paragraph) shall be included in all copies or substantial portions of the
|
|
|
|
|
* Software.
|
|
|
|
|
*
|
|
|
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
|
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
|
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
|
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
|
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
|
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
|
|
|
|
|
* IN THE SOFTWARE.
|
|
|
|
|
*
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
#include "nir.h"
|
|
|
|
|
#include "nir_builder.h"
|
|
|
|
|
#include "c99_math.h"
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* Lowers some unsupported double operations, using only:
|
|
|
|
|
*
|
|
|
|
|
* - pack/unpackDouble2x32
|
|
|
|
|
* - conversion to/from single-precision
|
|
|
|
|
* - double add, mul, and fma
|
|
|
|
|
* - conditional select
|
|
|
|
|
* - 32-bit integer and floating point arithmetic
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
/* Creates a double with the exponent bits set to a given integer value */
|
|
|
|
|
static nir_ssa_def *
|
|
|
|
|
set_exponent(nir_builder *b, nir_ssa_def *src, nir_ssa_def *exp)
|
|
|
|
|
{
|
|
|
|
|
/* Split into bits 0-31 and 32-63 */
|
|
|
|
|
nir_ssa_def *lo = nir_unpack_double_2x32_split_x(b, src);
|
|
|
|
|
nir_ssa_def *hi = nir_unpack_double_2x32_split_y(b, src);
|
|
|
|
|
|
|
|
|
|
/* The exponent is bits 52-62, or 20-30 of the high word, so set the exponent
|
|
|
|
|
* to 1023
|
|
|
|
|
*/
|
|
|
|
|
nir_ssa_def *new_hi = nir_bfi(b, nir_imm_int(b, 0x7ff00000), exp, hi);
|
|
|
|
|
/* recombine */
|
|
|
|
|
return nir_pack_double_2x32_split(b, lo, new_hi);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static nir_ssa_def *
|
|
|
|
|
get_exponent(nir_builder *b, nir_ssa_def *src)
|
|
|
|
|
{
|
|
|
|
|
/* get bits 32-63 */
|
|
|
|
|
nir_ssa_def *hi = nir_unpack_double_2x32_split_y(b, src);
|
|
|
|
|
|
|
|
|
|
/* extract bits 20-30 of the high word */
|
|
|
|
|
return nir_ubitfield_extract(b, hi, nir_imm_int(b, 20), nir_imm_int(b, 11));
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Return infinity with the sign of the given source which is +/-0 */
|
|
|
|
|
|
|
|
|
|
static nir_ssa_def *
|
|
|
|
|
get_signed_inf(nir_builder *b, nir_ssa_def *zero)
|
|
|
|
|
{
|
|
|
|
|
nir_ssa_def *zero_hi = nir_unpack_double_2x32_split_y(b, zero);
|
|
|
|
|
|
|
|
|
|
/* The bit pattern for infinity is 0x7ff0000000000000, where the sign bit
|
|
|
|
|
* is the highest bit. Only the sign bit can be non-zero in the passed in
|
|
|
|
|
* source. So we essentially need to OR the infinity and the zero, except
|
|
|
|
|
* the low 32 bits are always 0 so we can construct the correct high 32
|
|
|
|
|
* bits and then pack it together with zero low 32 bits.
|
|
|
|
|
*/
|
|
|
|
|
nir_ssa_def *inf_hi = nir_ior(b, nir_imm_int(b, 0x7ff00000), zero_hi);
|
|
|
|
|
return nir_pack_double_2x32_split(b, nir_imm_int(b, 0), inf_hi);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* Generates the correctly-signed infinity if the source was zero, and flushes
|
|
|
|
|
* the result to 0 if the source was infinity or the calculated exponent was
|
|
|
|
|
* too small to be representable.
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
static nir_ssa_def *
|
|
|
|
|
fix_inv_result(nir_builder *b, nir_ssa_def *res, nir_ssa_def *src,
|
|
|
|
|
nir_ssa_def *exp)
|
|
|
|
|
{
|
|
|
|
|
/* If the exponent is too small or the original input was infinity/NaN,
|
|
|
|
|
* force the result to 0 (flush denorms) to avoid the work of handling
|
|
|
|
|
* denorms properly. Note that this doesn't preserve positive/negative
|
|
|
|
|
* zeros, but GLSL doesn't require it.
|
|
|
|
|
*/
|
|
|
|
|
res = nir_bcsel(b, nir_ior(b, nir_ige(b, nir_imm_int(b, 0), exp),
|
|
|
|
|
nir_feq(b, nir_fabs(b, src),
|
|
|
|
|
nir_imm_double(b, INFINITY))),
|
|
|
|
|
nir_imm_double(b, 0.0f), res);
|
|
|
|
|
|
|
|
|
|
/* If the original input was 0, generate the correctly-signed infinity */
|
|
|
|
|
res = nir_bcsel(b, nir_fne(b, src, nir_imm_double(b, 0.0f)),
|
|
|
|
|
res, get_signed_inf(b, src));
|
|
|
|
|
|
|
|
|
|
return res;
|
|
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static nir_ssa_def *
|
|
|
|
|
lower_rcp(nir_builder *b, nir_ssa_def *src)
|
|
|
|
|
{
|
|
|
|
|
/* normalize the input to avoid range issues */
|
|
|
|
|
nir_ssa_def *src_norm = set_exponent(b, src, nir_imm_int(b, 1023));
|
|
|
|
|
|
|
|
|
|
/* cast to float, do an rcp, and then cast back to get an approximate
|
|
|
|
|
* result
|
|
|
|
|
*/
|
|
|
|
|
nir_ssa_def *ra = nir_f2d(b, nir_frcp(b, nir_d2f(b, src_norm)));
|
|
|
|
|
|
|
|
|
|
/* Fixup the exponent of the result - note that we check if this is too
|
|
|
|
|
* small below.
|
|
|
|
|
*/
|
|
|
|
|
nir_ssa_def *new_exp = nir_isub(b, get_exponent(b, ra),
|
|
|
|
|
nir_isub(b, get_exponent(b, src),
|
|
|
|
|
nir_imm_int(b, 1023)));
|
|
|
|
|
|
|
|
|
|
ra = set_exponent(b, ra, new_exp);
|
|
|
|
|
|
|
|
|
|
/* Do a few Newton-Raphson steps to improve precision.
|
|
|
|
|
*
|
|
|
|
|
* Each step doubles the precision, and we started off with around 24 bits,
|
|
|
|
|
* so we only need to do 2 steps to get to full precision. The step is:
|
|
|
|
|
*
|
|
|
|
|
* x_new = x * (2 - x*src)
|
|
|
|
|
*
|
|
|
|
|
* But we can re-arrange this to improve precision by using another fused
|
|
|
|
|
* multiply-add:
|
|
|
|
|
*
|
|
|
|
|
* x_new = x + x * (1 - x*src)
|
|
|
|
|
*
|
|
|
|
|
* See https://en.wikipedia.org/wiki/Division_algorithm for more details.
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
ra = nir_ffma(b, ra, nir_ffma(b, ra, src, nir_imm_double(b, -1)), ra);
|
|
|
|
|
ra = nir_ffma(b, ra, nir_ffma(b, ra, src, nir_imm_double(b, -1)), ra);
|
|
|
|
|
|
|
|
|
|
return fix_inv_result(b, ra, src, new_exp);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static nir_ssa_def *
|
|
|
|
|
lower_sqrt_rsq(nir_builder *b, nir_ssa_def *src, bool sqrt)
|
|
|
|
|
{
|
|
|
|
|
/* We want to compute:
|
|
|
|
|
*
|
|
|
|
|
* 1/sqrt(m * 2^e)
|
|
|
|
|
*
|
|
|
|
|
* When the exponent is even, this is equivalent to:
|
|
|
|
|
*
|
|
|
|
|
* 1/sqrt(m) * 2^(-e/2)
|
|
|
|
|
*
|
|
|
|
|
* and then the exponent is odd, this is equal to:
|
|
|
|
|
*
|
|
|
|
|
* 1/sqrt(m * 2) * 2^(-(e - 1)/2)
|
|
|
|
|
*
|
|
|
|
|
* where the m * 2 is absorbed into the exponent. So we want the exponent
|
|
|
|
|
* inside the square root to be 1 if e is odd and 0 if e is even, and we
|
|
|
|
|
* want to subtract off e/2 from the final exponent, rounded to negative
|
|
|
|
|
* infinity. We can do the former by first computing the unbiased exponent,
|
|
|
|
|
* and then AND'ing it with 1 to get 0 or 1, and we can do the latter by
|
|
|
|
|
* shifting right by 1.
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
nir_ssa_def *unbiased_exp = nir_isub(b, get_exponent(b, src),
|
|
|
|
|
nir_imm_int(b, 1023));
|
|
|
|
|
nir_ssa_def *even = nir_iand(b, unbiased_exp, nir_imm_int(b, 1));
|
|
|
|
|
nir_ssa_def *half = nir_ishr(b, unbiased_exp, nir_imm_int(b, 1));
|
|
|
|
|
|
|
|
|
|
nir_ssa_def *src_norm = set_exponent(b, src,
|
|
|
|
|
nir_iadd(b, nir_imm_int(b, 1023),
|
|
|
|
|
even));
|
|
|
|
|
|
|
|
|
|
nir_ssa_def *ra = nir_f2d(b, nir_frsq(b, nir_d2f(b, src_norm)));
|
|
|
|
|
nir_ssa_def *new_exp = nir_isub(b, get_exponent(b, ra), half);
|
|
|
|
|
ra = set_exponent(b, ra, new_exp);
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* The following implements an iterative algorithm that's very similar
|
|
|
|
|
* between sqrt and rsqrt. We start with an iteration of Goldschmit's
|
|
|
|
|
* algorithm, which looks like:
|
|
|
|
|
*
|
|
|
|
|
* a = the source
|
|
|
|
|
* y_0 = initial (single-precision) rsqrt estimate
|
|
|
|
|
*
|
|
|
|
|
* h_0 = .5 * y_0
|
|
|
|
|
* g_0 = a * y_0
|
|
|
|
|
* r_0 = .5 - h_0 * g_0
|
|
|
|
|
* g_1 = g_0 * r_0 + g_0
|
|
|
|
|
* h_1 = h_0 * r_0 + h_0
|
|
|
|
|
*
|
|
|
|
|
* Now g_1 ~= sqrt(a), and h_1 ~= 1/(2 * sqrt(a)). We could continue
|
|
|
|
|
* applying another round of Goldschmit, but since we would never refer
|
|
|
|
|
* back to a (the original source), we would add too much rounding error.
|
|
|
|
|
* So instead, we do one last round of Newton-Raphson, which has better
|
|
|
|
|
* rounding characteristics, to get the final rounding correct. This is
|
|
|
|
|
* split into two cases:
|
|
|
|
|
*
|
|
|
|
|
* 1. sqrt
|
|
|
|
|
*
|
|
|
|
|
* Normally, doing a round of Newton-Raphson for sqrt involves taking a
|
|
|
|
|
* reciprocal of the original estimate, which is slow since it isn't
|
|
|
|
|
* supported in HW. But we can take advantage of the fact that we already
|
|
|
|
|
* computed a good estimate of 1/(2 * g_1) by rearranging it like so:
|
|
|
|
|
*
|
|
|
|
|
* g_2 = .5 * (g_1 + a / g_1)
|
|
|
|
|
* = g_1 + .5 * (a / g_1 - g_1)
|
|
|
|
|
* = g_1 + (.5 / g_1) * (a - g_1^2)
|
|
|
|
|
* = g_1 + h_1 * (a - g_1^2)
|
|
|
|
|
*
|
|
|
|
|
* The second term represents the error, and by splitting it out we can get
|
|
|
|
|
* better precision by computing it as part of a fused multiply-add. Since
|
|
|
|
|
* both Newton-Raphson and Goldschmit approximately double the precision of
|
|
|
|
|
* the result, these two steps should be enough.
|
|
|
|
|
*
|
|
|
|
|
* 2. rsqrt
|
|
|
|
|
*
|
|
|
|
|
* First off, note that the first round of the Goldschmit algorithm is
|
|
|
|
|
* really just a Newton-Raphson step in disguise:
|
|
|
|
|
*
|
|
|
|
|
* h_1 = h_0 * (.5 - h_0 * g_0) + h_0
|
|
|
|
|
* = h_0 * (1.5 - h_0 * g_0)
|
|
|
|
|
* = h_0 * (1.5 - .5 * a * y_0^2)
|
|
|
|
|
* = (.5 * y_0) * (1.5 - .5 * a * y_0^2)
|
|
|
|
|
*
|
|
|
|
|
* which is the standard formula multiplied by .5. Unlike in the sqrt case,
|
|
|
|
|
* we don't need the inverse to do a Newton-Raphson step; we just need h_1,
|
|
|
|
|
* so we can skip the calculation of g_1. Instead, we simply do another
|
|
|
|
|
* Newton-Raphson step:
|
|
|
|
|
*
|
|
|
|
|
* y_1 = 2 * h_1
|
|
|
|
|
* r_1 = .5 - h_1 * y_1 * a
|
|
|
|
|
* y_2 = y_1 * r_1 + y_1
|
|
|
|
|
*
|
|
|
|
|
* Where the difference from Goldschmit is that we calculate y_1 * a
|
|
|
|
|
* instead of using g_1. Doing it this way should be as fast as computing
|
|
|
|
|
* y_1 up front instead of h_1, and it lets us share the code for the
|
|
|
|
|
* initial Goldschmit step with the sqrt case.
|
|
|
|
|
*
|
|
|
|
|
* Putting it together, the computations are:
|
|
|
|
|
*
|
|
|
|
|
* h_0 = .5 * y_0
|
|
|
|
|
* g_0 = a * y_0
|
|
|
|
|
* r_0 = .5 - h_0 * g_0
|
|
|
|
|
* h_1 = h_0 * r_0 + h_0
|
|
|
|
|
* if sqrt:
|
|
|
|
|
* g_1 = g_0 * r_0 + g_0
|
|
|
|
|
* r_1 = a - g_1 * g_1
|
|
|
|
|
* g_2 = h_1 * r_1 + g_1
|
|
|
|
|
* else:
|
|
|
|
|
* y_1 = 2 * h_1
|
|
|
|
|
* r_1 = .5 - y_1 * (h_1 * a)
|
|
|
|
|
* y_2 = y_1 * r_1 + y_1
|
|
|
|
|
*
|
|
|
|
|
* For more on the ideas behind this, see "Software Division and Square
|
|
|
|
|
* Root Using Goldschmit's Algorithms" by Markstein and the Wikipedia page
|
|
|
|
|
* on square roots
|
|
|
|
|
* (https://en.wikipedia.org/wiki/Methods_of_computing_square_roots).
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
nir_ssa_def *one_half = nir_imm_double(b, 0.5);
|
|
|
|
|
nir_ssa_def *h_0 = nir_fmul(b, one_half, ra);
|
|
|
|
|
nir_ssa_def *g_0 = nir_fmul(b, src, ra);
|
|
|
|
|
nir_ssa_def *r_0 = nir_ffma(b, nir_fneg(b, h_0), g_0, one_half);
|
|
|
|
|
nir_ssa_def *h_1 = nir_ffma(b, h_0, r_0, h_0);
|
|
|
|
|
nir_ssa_def *res;
|
|
|
|
|
if (sqrt) {
|
|
|
|
|
nir_ssa_def *g_1 = nir_ffma(b, g_0, r_0, g_0);
|
|
|
|
|
nir_ssa_def *r_1 = nir_ffma(b, nir_fneg(b, g_1), g_1, src);
|
|
|
|
|
res = nir_ffma(b, h_1, r_1, g_1);
|
|
|
|
|
} else {
|
|
|
|
|
nir_ssa_def *y_1 = nir_fmul(b, nir_imm_double(b, 2.0), h_1);
|
|
|
|
|
nir_ssa_def *r_1 = nir_ffma(b, nir_fneg(b, y_1), nir_fmul(b, h_1, src),
|
|
|
|
|
one_half);
|
|
|
|
|
res = nir_ffma(b, y_1, r_1, y_1);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (sqrt) {
|
|
|
|
|
/* Here, the special cases we need to handle are
|
|
|
|
|
* 0 -> 0 and
|
|
|
|
|
* +inf -> +inf
|
|
|
|
|
*/
|
|
|
|
|
res = nir_bcsel(b, nir_ior(b, nir_feq(b, src, nir_imm_double(b, 0.0)),
|
|
|
|
|
nir_feq(b, src, nir_imm_double(b, INFINITY))),
|
|
|
|
|
src, res);
|
|
|
|
|
} else {
|
|
|
|
|
res = fix_inv_result(b, res, src, new_exp);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return res;
|
|
|
|
|
}
|
|
|
|
|
|
2016-01-04 12:52:14 +01:00
|
|
|
static nir_ssa_def *
|
|
|
|
|
lower_trunc(nir_builder *b, nir_ssa_def *src)
|
|
|
|
|
{
|
|
|
|
|
nir_ssa_def *unbiased_exp = nir_isub(b, get_exponent(b, src),
|
|
|
|
|
nir_imm_int(b, 1023));
|
|
|
|
|
|
|
|
|
|
nir_ssa_def *frac_bits = nir_isub(b, nir_imm_int(b, 52), unbiased_exp);
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* Decide the operation to apply depending on the unbiased exponent:
|
|
|
|
|
*
|
|
|
|
|
* if (unbiased_exp < 0)
|
|
|
|
|
* return 0
|
|
|
|
|
* else if (unbiased_exp > 52)
|
|
|
|
|
* return src
|
|
|
|
|
* else
|
|
|
|
|
* return src & (~0 << frac_bits)
|
|
|
|
|
*
|
|
|
|
|
* Notice that the else branch is a 64-bit integer operation that we need
|
|
|
|
|
* to implement in terms of 32-bit integer arithmetics (at least until we
|
|
|
|
|
* support 64-bit integer arithmetics).
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
/* Compute "~0 << frac_bits" in terms of hi/lo 32-bit integer math */
|
|
|
|
|
nir_ssa_def *mask_lo =
|
|
|
|
|
nir_bcsel(b,
|
|
|
|
|
nir_ige(b, frac_bits, nir_imm_int(b, 32)),
|
|
|
|
|
nir_imm_int(b, 0),
|
|
|
|
|
nir_ishl(b, nir_imm_int(b, ~0), frac_bits));
|
|
|
|
|
|
|
|
|
|
nir_ssa_def *mask_hi =
|
|
|
|
|
nir_bcsel(b,
|
|
|
|
|
nir_ilt(b, frac_bits, nir_imm_int(b, 33)),
|
|
|
|
|
nir_imm_int(b, ~0),
|
|
|
|
|
nir_ishl(b,
|
|
|
|
|
nir_imm_int(b, ~0),
|
|
|
|
|
nir_isub(b, frac_bits, nir_imm_int(b, 32))));
|
|
|
|
|
|
|
|
|
|
nir_ssa_def *src_lo = nir_unpack_double_2x32_split_x(b, src);
|
|
|
|
|
nir_ssa_def *src_hi = nir_unpack_double_2x32_split_y(b, src);
|
|
|
|
|
|
|
|
|
|
return
|
|
|
|
|
nir_bcsel(b,
|
|
|
|
|
nir_ilt(b, unbiased_exp, nir_imm_int(b, 0)),
|
|
|
|
|
nir_imm_double(b, 0.0),
|
|
|
|
|
nir_bcsel(b, nir_ige(b, unbiased_exp, nir_imm_int(b, 53)),
|
|
|
|
|
src,
|
|
|
|
|
nir_pack_double_2x32_split(b,
|
|
|
|
|
nir_iand(b, mask_lo, src_lo),
|
|
|
|
|
nir_iand(b, mask_hi, src_hi))));
|
|
|
|
|
}
|
|
|
|
|
|
2016-01-04 16:02:47 +01:00
|
|
|
static nir_ssa_def *
|
|
|
|
|
lower_floor(nir_builder *b, nir_ssa_def *src)
|
|
|
|
|
{
|
|
|
|
|
/*
|
|
|
|
|
* For x >= 0, floor(x) = trunc(x)
|
|
|
|
|
* For x < 0,
|
|
|
|
|
* - if x is integer, floor(x) = x
|
|
|
|
|
* - otherwise, floor(x) = trunc(x) - 1
|
|
|
|
|
*/
|
|
|
|
|
nir_ssa_def *tr = nir_ftrunc(b, src);
|
|
|
|
|
nir_ssa_def *positive = nir_fge(b, src, nir_imm_double(b, 0.0));
|
|
|
|
|
return nir_bcsel(b,
|
|
|
|
|
nir_ior(b, positive, nir_feq(b, src, tr)),
|
|
|
|
|
tr,
|
|
|
|
|
nir_fsub(b, tr, nir_imm_double(b, 1.0)));
|
|
|
|
|
}
|
|
|
|
|
|
2016-01-04 16:10:11 +01:00
|
|
|
static nir_ssa_def *
|
|
|
|
|
lower_ceil(nir_builder *b, nir_ssa_def *src)
|
|
|
|
|
{
|
|
|
|
|
/* if x < 0, ceil(x) = trunc(x)
|
|
|
|
|
* else if (x - trunc(x) == 0), ceil(x) = x
|
|
|
|
|
* else, ceil(x) = trunc(x) + 1
|
|
|
|
|
*/
|
|
|
|
|
nir_ssa_def *tr = nir_ftrunc(b, src);
|
|
|
|
|
nir_ssa_def *negative = nir_flt(b, src, nir_imm_double(b, 0.0));
|
|
|
|
|
return nir_bcsel(b,
|
|
|
|
|
nir_ior(b, negative, nir_feq(b, src, tr)),
|
|
|
|
|
tr,
|
|
|
|
|
nir_fadd(b, tr, nir_imm_double(b, 1.0)));
|
|
|
|
|
}
|
|
|
|
|
|
2016-01-05 09:14:51 +01:00
|
|
|
static nir_ssa_def *
|
|
|
|
|
lower_fract(nir_builder *b, nir_ssa_def *src)
|
|
|
|
|
{
|
|
|
|
|
return nir_fsub(b, src, nir_ffloor(b, src));
|
|
|
|
|
}
|
|
|
|
|
|
2015-07-31 11:57:48 -07:00
|
|
|
static void
|
|
|
|
|
lower_doubles_instr(nir_alu_instr *instr, nir_lower_doubles_options options)
|
|
|
|
|
{
|
|
|
|
|
assert(instr->dest.dest.is_ssa);
|
|
|
|
|
if (instr->dest.dest.ssa.bit_size != 64)
|
|
|
|
|
return;
|
|
|
|
|
|
|
|
|
|
switch (instr->op) {
|
|
|
|
|
case nir_op_frcp:
|
|
|
|
|
if (!(options & nir_lower_drcp))
|
|
|
|
|
return;
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case nir_op_fsqrt:
|
|
|
|
|
if (!(options & nir_lower_dsqrt))
|
|
|
|
|
return;
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case nir_op_frsq:
|
|
|
|
|
if (!(options & nir_lower_drsq))
|
|
|
|
|
return;
|
|
|
|
|
break;
|
|
|
|
|
|
2016-01-04 12:52:14 +01:00
|
|
|
case nir_op_ftrunc:
|
|
|
|
|
if (!(options & nir_lower_dtrunc))
|
|
|
|
|
return;
|
|
|
|
|
break;
|
|
|
|
|
|
2016-01-04 16:02:47 +01:00
|
|
|
case nir_op_ffloor:
|
|
|
|
|
if (!(options & nir_lower_dfloor))
|
|
|
|
|
return;
|
|
|
|
|
break;
|
|
|
|
|
|
2016-01-04 16:10:11 +01:00
|
|
|
case nir_op_fceil:
|
|
|
|
|
if (!(options & nir_lower_dceil))
|
|
|
|
|
return;
|
|
|
|
|
break;
|
|
|
|
|
|
2016-01-05 09:14:51 +01:00
|
|
|
case nir_op_ffract:
|
|
|
|
|
if (!(options & nir_lower_dfract))
|
|
|
|
|
return;
|
|
|
|
|
break;
|
|
|
|
|
|
2015-07-31 11:57:48 -07:00
|
|
|
default:
|
|
|
|
|
return;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
nir_builder bld;
|
|
|
|
|
nir_builder_init(&bld, nir_cf_node_get_function(&instr->instr.block->cf_node));
|
|
|
|
|
bld.cursor = nir_before_instr(&instr->instr);
|
|
|
|
|
|
|
|
|
|
nir_ssa_def *src = nir_fmov_alu(&bld, instr->src[0],
|
|
|
|
|
instr->dest.dest.ssa.num_components);
|
|
|
|
|
|
|
|
|
|
nir_ssa_def *result;
|
|
|
|
|
|
|
|
|
|
switch (instr->op) {
|
|
|
|
|
case nir_op_frcp:
|
|
|
|
|
result = lower_rcp(&bld, src);
|
|
|
|
|
break;
|
|
|
|
|
case nir_op_fsqrt:
|
|
|
|
|
result = lower_sqrt_rsq(&bld, src, true);
|
|
|
|
|
break;
|
|
|
|
|
case nir_op_frsq:
|
|
|
|
|
result = lower_sqrt_rsq(&bld, src, false);
|
|
|
|
|
break;
|
2016-01-04 12:52:14 +01:00
|
|
|
case nir_op_ftrunc:
|
|
|
|
|
result = lower_trunc(&bld, src);
|
|
|
|
|
break;
|
2016-01-04 16:02:47 +01:00
|
|
|
case nir_op_ffloor:
|
|
|
|
|
result = lower_floor(&bld, src);
|
|
|
|
|
break;
|
2016-01-04 16:10:11 +01:00
|
|
|
case nir_op_fceil:
|
|
|
|
|
result = lower_ceil(&bld, src);
|
|
|
|
|
break;
|
2016-01-05 09:14:51 +01:00
|
|
|
case nir_op_ffract:
|
|
|
|
|
result = lower_fract(&bld, src);
|
|
|
|
|
break;
|
2015-07-31 11:57:48 -07:00
|
|
|
default:
|
|
|
|
|
unreachable("unhandled opcode");
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
nir_ssa_def_rewrite_uses(&instr->dest.dest.ssa, nir_src_for_ssa(result));
|
|
|
|
|
nir_instr_remove(&instr->instr);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static bool
|
|
|
|
|
lower_doubles_block(nir_block *block, void *ctx)
|
|
|
|
|
{
|
|
|
|
|
nir_lower_doubles_options options = *((nir_lower_doubles_options *) ctx);
|
|
|
|
|
|
|
|
|
|
nir_foreach_instr_safe(block, instr) {
|
|
|
|
|
if (instr->type != nir_instr_type_alu)
|
|
|
|
|
continue;
|
|
|
|
|
|
|
|
|
|
lower_doubles_instr(nir_instr_as_alu(instr), options);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return true;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static void
|
|
|
|
|
lower_doubles_impl(nir_function_impl *impl, nir_lower_doubles_options options)
|
|
|
|
|
{
|
|
|
|
|
nir_foreach_block_call(impl, lower_doubles_block, &options);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void
|
|
|
|
|
nir_lower_doubles(nir_shader *shader, nir_lower_doubles_options options)
|
|
|
|
|
{
|
|
|
|
|
nir_foreach_function(shader, function) {
|
|
|
|
|
if (function->impl)
|
|
|
|
|
lower_doubles_impl(function->impl, options);
|
|
|
|
|
}
|
|
|
|
|
}
|