mesa/src/amd/compiler/aco_live_var_analysis.cpp

244 lines
9 KiB
C++
Raw Normal View History

/*
* Copyright © 2018 Valve Corporation
* Copyright © 2018 Google
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
* Authors:
* Daniel Schürmann (daniel.schuermann@campus.tu-berlin.de)
* Bas Nieuwenhuizen (bas@basnieuwenhuizen.nl)
*
*/
#include "aco_ir.h"
#include <set>
#include <vector>
#include "vulkan/radv_shader.h"
namespace aco {
namespace {
void process_live_temps_per_block(Program *program, live& lives, Block* block,
std::set<unsigned>& worklist, std::vector<uint16_t>& phi_sgpr_ops)
{
std::vector<RegisterDemand>& register_demand = lives.register_demand[block->index];
RegisterDemand new_demand;
register_demand.resize(block->instructions.size());
block->register_demand = RegisterDemand();
std::set<Temp> live_sgprs;
std::set<Temp> live_vgprs;
/* add the live_out_exec to live */
bool exec_live = false;
if (block->live_out_exec != Temp()) {
live_sgprs.insert(block->live_out_exec);
new_demand.sgpr += 2;
exec_live = true;
}
/* split the live-outs from this block into the temporary sets */
std::vector<std::set<Temp>>& live_temps = lives.live_out;
for (const Temp temp : live_temps[block->index]) {
const bool inserted = temp.is_linear()
? live_sgprs.insert(temp).second
: live_vgprs.insert(temp).second;
if (inserted) {
new_demand += temp;
}
}
new_demand.sgpr -= phi_sgpr_ops[block->index];
/* traverse the instructions backwards */
for (int idx = block->instructions.size() -1; idx >= 0; idx--)
{
/* substract the 2 sgprs from exec */
if (exec_live)
assert(new_demand.sgpr >= 2);
register_demand[idx] = RegisterDemand(new_demand.vgpr, new_demand.sgpr - (exec_live ? 2 : 0));
Instruction *insn = block->instructions[idx].get();
/* KILL */
for (Definition& definition : insn->definitions) {
if (!definition.isTemp()) {
continue;
}
const Temp temp = definition.getTemp();
size_t n = 0;
if (temp.is_linear())
n = live_sgprs.erase(temp);
else
n = live_vgprs.erase(temp);
if (n) {
new_demand -= temp;
definition.setKill(false);
} else {
register_demand[idx] += temp;
definition.setKill(true);
}
if (definition.isFixed() && definition.physReg() == exec)
exec_live = false;
}
/* GEN */
if (insn->opcode == aco_opcode::p_phi ||
insn->opcode == aco_opcode::p_linear_phi) {
/* directly insert into the predecessors live-out set */
std::vector<unsigned>& preds = insn->opcode == aco_opcode::p_phi
? block->logical_preds
: block->linear_preds;
for (unsigned i = 0; i < preds.size(); ++i)
{
Operand &operand = insn->operands[i];
if (!operand.isTemp()) {
continue;
}
/* check if we changed an already processed block */
const bool inserted = live_temps[preds[i]].insert(operand.getTemp()).second;
if (inserted) {
operand.setFirstKill(true);
worklist.insert(preds[i]);
if (insn->opcode == aco_opcode::p_phi && operand.getTemp().type() == RegType::sgpr)
phi_sgpr_ops[preds[i]] += operand.size();
}
}
} else if (insn->opcode == aco_opcode::p_logical_end) {
new_demand.sgpr += phi_sgpr_ops[block->index];
} else {
for (unsigned i = 0; i < insn->operands.size(); ++i)
{
Operand& operand = insn->operands[i];
if (!operand.isTemp()) {
continue;
}
const Temp temp = operand.getTemp();
const bool inserted = temp.is_linear()
? live_sgprs.insert(temp).second
: live_vgprs.insert(temp).second;
if (inserted) {
operand.setFirstKill(true);
for (unsigned j = i + 1; j < insn->operands.size(); ++j) {
if (insn->operands[j].isTemp() && insn->operands[j].tempId() == operand.tempId()) {
insn->operands[j].setFirstKill(false);
insn->operands[j].setKill(true);
}
}
new_demand += temp;
} else {
operand.setKill(false);
}
if (operand.isFixed() && operand.physReg() == exec)
exec_live = true;
}
}
block->register_demand.update(register_demand[idx]);
}
/* now, we have the live-in sets and need to merge them into the live-out sets */
for (unsigned pred_idx : block->logical_preds) {
for (Temp vgpr : live_vgprs) {
auto it = live_temps[pred_idx].insert(vgpr);
if (it.second)
worklist.insert(pred_idx);
}
}
for (unsigned pred_idx : block->linear_preds) {
for (Temp sgpr : live_sgprs) {
auto it = live_temps[pred_idx].insert(sgpr);
if (it.second)
worklist.insert(pred_idx);
}
}
if (!(block->index != 0 || (live_vgprs.empty() && live_sgprs.empty()))) {
aco_print_program(program, stderr);
fprintf(stderr, "These temporaries are never defined or are defined after use:\n");
for (Temp vgpr : live_vgprs)
fprintf(stderr, "%%%d\n", vgpr.id());
for (Temp sgpr : live_sgprs)
fprintf(stderr, "%%%d\n", sgpr.id());
abort();
}
assert(block->index != 0 || new_demand == RegisterDemand());
}
} /* end namespace */
void update_vgpr_sgpr_demand(Program* program, const RegisterDemand new_demand)
{
// TODO: also take shared mem into account
const int16_t total_sgpr_regs = program->chip_class >= GFX8 ? 800 : 512;
const int16_t max_addressible_sgpr = program->sgpr_limit;
/* VGPRs are allocated in chunks of 4 */
const int16_t rounded_vgpr_demand = std::max<int16_t>(4, (new_demand.vgpr + 3) & ~3);
/* SGPRs are allocated in chunks of 16 between 8 and 104. VCC occupies the last 2 registers */
const int16_t rounded_sgpr_demand = std::min(std::max<int16_t>(8, (new_demand.sgpr + 2 + 7) & ~7), max_addressible_sgpr);
/* this won't compile, register pressure reduction necessary */
if (new_demand.vgpr > 256 || new_demand.sgpr > max_addressible_sgpr) {
program->num_waves = 0;
program->max_reg_demand = new_demand;
} else {
program->num_waves = std::min<uint16_t>(10,
std::min<uint16_t>(256 / rounded_vgpr_demand,
total_sgpr_regs / rounded_sgpr_demand));
program->max_reg_demand = { int16_t((256 / program->num_waves) & ~3), std::min<int16_t>(((total_sgpr_regs / program->num_waves) & ~7) - 2, max_addressible_sgpr)};
}
}
live live_var_analysis(Program* program,
const struct radv_nir_compiler_options *options)
{
live result;
result.live_out.resize(program->blocks.size());
result.register_demand.resize(program->blocks.size());
std::set<unsigned> worklist;
std::vector<uint16_t> phi_sgpr_ops(program->blocks.size());
RegisterDemand new_demand;
/* this implementation assumes that the block idx corresponds to the block's position in program->blocks vector */
for (Block& block : program->blocks)
worklist.insert(block.index);
while (!worklist.empty()) {
std::set<unsigned>::reverse_iterator b_it = worklist.rbegin();
unsigned block_idx = *b_it;
worklist.erase(block_idx);
process_live_temps_per_block(program, result, &program->blocks[block_idx], worklist, phi_sgpr_ops);
new_demand.update(program->blocks[block_idx].register_demand);
}
/* calculate the program's register demand and number of waves */
update_vgpr_sgpr_demand(program, new_demand);
return result;
}
}