mesa/src/amd/addrlib/gfx9/gfx9addrlib.cpp

2650 lines
85 KiB
C++
Raw Normal View History

2016-10-06 18:55:25 +02:00
/*
* Copyright © 2017 Advanced Micro Devices, Inc.
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sub license, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
* OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NON-INFRINGEMENT. IN NO EVENT SHALL THE COPYRIGHT HOLDERS, AUTHORS
* AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
* USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial portions
* of the Software.
*/
/**
****************************************************************************************************
* @file gfx9addrlib.cpp
* @brief Contgfx9ns the implementation for the Gfx9Lib class.
****************************************************************************************************
*/
#include "gfx9addrlib.h"
#include "gfx9_gb_reg.h"
#include "gfx9_enum.h"
#if BRAHMA_BUILD
#include "amdgpu_id.h"
#else
#include "ai_id.h"
#include "rv_id.h"
#endif
////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////
namespace Addr
{
/**
****************************************************************************************************
* Gfx9HwlInit
*
* @brief
* Creates an Gfx9Lib object.
*
* @return
* Returns an Gfx9Lib object pointer.
****************************************************************************************************
*/
Addr::Lib* Gfx9HwlInit(const Client* pClient)
{
return V2::Gfx9Lib::CreateObj(pClient);
}
namespace V2
{
/**
****************************************************************************************************
* Gfx9Lib::Gfx9Lib
*
* @brief
* Constructor
*
****************************************************************************************************
*/
Gfx9Lib::Gfx9Lib(const Client* pClient)
:
Lib(pClient),
m_numEquations(0)
{
m_class = AI_ADDRLIB;
memset(&m_settings, 0, sizeof(m_settings));
}
/**
****************************************************************************************************
* Gfx9Lib::~Gfx9Lib
*
* @brief
* Destructor
****************************************************************************************************
*/
Gfx9Lib::~Gfx9Lib()
{
}
/**
****************************************************************************************************
* Gfx9Lib::HwlComputeHtileInfo
*
* @brief
* Interface function stub of AddrComputeHtilenfo
*
* @return
* ADDR_E_RETURNCODE
****************************************************************************************************
*/
ADDR_E_RETURNCODE Gfx9Lib::HwlComputeHtileInfo(
const ADDR2_COMPUTE_HTILE_INFO_INPUT* pIn, ///< [in] input structure
ADDR2_COMPUTE_HTILE_INFO_OUTPUT* pOut ///< [out] output structure
) const
{
UINT_32 numPipeTotal = GetPipeNumForMetaAddressing(pIn->hTileFlags.pipeAligned,
pIn->swizzleMode);
UINT_32 numRbTotal = pIn->hTileFlags.rbAligned ? m_se * m_rbPerSe : 1;
UINT_32 numCompressBlkPerMetaBlk, numCompressBlkPerMetaBlkLog2;
if ((numPipeTotal == 1) && (numRbTotal == 1))
{
numCompressBlkPerMetaBlkLog2 = 10;
}
else
{
numCompressBlkPerMetaBlkLog2 = m_seLog2 + m_rbPerSeLog2 + 10;
}
numCompressBlkPerMetaBlk = 1 << numCompressBlkPerMetaBlkLog2;
Dim3d metaBlkDim = {8, 8, 1};
UINT_32 totalAmpBits = numCompressBlkPerMetaBlkLog2;
UINT_32 widthAmp = (pIn->numMipLevels > 1) ? (totalAmpBits >> 1) : RoundHalf(totalAmpBits);
UINT_32 heightAmp = totalAmpBits - widthAmp;
metaBlkDim.w <<= widthAmp;
metaBlkDim.h <<= heightAmp;
#if DEBUG
Dim3d metaBlkDimDbg = {8, 8, 1};
for (UINT_32 index = 0; index < numCompressBlkPerMetaBlkLog2; index++)
{
if ((metaBlkDimDbg.h < metaBlkDimDbg.w) ||
((pIn->numMipLevels > 1) && (metaBlkDimDbg.h == metaBlkDimDbg.w)))
{
metaBlkDimDbg.h <<= 1;
}
else
{
metaBlkDimDbg.w <<= 1;
}
}
ADDR_ASSERT((metaBlkDimDbg.w == metaBlkDim.w) && (metaBlkDimDbg.h == metaBlkDim.h));
#endif
UINT_32 numMetaBlkX;
UINT_32 numMetaBlkY;
UINT_32 numMetaBlkZ;
GetMetaMipInfo(pIn->numMipLevels, &metaBlkDim, FALSE, pOut->pMipInfo,
pIn->unalignedWidth, pIn->unalignedHeight, pIn->numSlices,
&numMetaBlkX, &numMetaBlkY, &numMetaBlkZ);
UINT_32 sizeAlign = numPipeTotal * numRbTotal * m_pipeInterleaveBytes;
pOut->pitch = numMetaBlkX * metaBlkDim.w;
pOut->height = numMetaBlkY * metaBlkDim.h;
pOut->sliceSize = numMetaBlkX * numMetaBlkY * numCompressBlkPerMetaBlk * 4;
pOut->metaBlkWidth = metaBlkDim.w;
pOut->metaBlkHeight = metaBlkDim.h;
pOut->metaBlkNumPerSlice = numMetaBlkX * numMetaBlkY;
if ((IsXor(pIn->swizzleMode) == FALSE) && (numPipeTotal > 2))
{
UINT_32 additionalAlign = numPipeTotal * numCompressBlkPerMetaBlk * 2;
if (additionalAlign > sizeAlign)
{
sizeAlign = additionalAlign;
}
}
pOut->htileBytes = PowTwoAlign(pOut->sliceSize * numMetaBlkZ, sizeAlign);
pOut->baseAlign = Max(numCompressBlkPerMetaBlk * 4, sizeAlign);
if (m_settings.metaBaseAlignFix)
{
pOut->baseAlign = Max(pOut->baseAlign, HwlComputeSurfaceBaseAlign(pIn->swizzleMode));
}
return ADDR_OK;
}
/**
****************************************************************************************************
* Gfx9Lib::HwlComputeCmaskInfo
*
* @brief
* Interface function stub of AddrComputeCmaskInfo
*
* @return
* ADDR_E_RETURNCODE
****************************************************************************************************
*/
ADDR_E_RETURNCODE Gfx9Lib::HwlComputeCmaskInfo(
const ADDR2_COMPUTE_CMASK_INFO_INPUT* pIn, ///< [in] input structure
ADDR2_COMPUTE_CMASK_INFO_OUTPUT* pOut ///< [out] output structure
) const
{
ADDR_ASSERT(pIn->resourceType == ADDR_RSRC_TEX_2D);
UINT_32 numPipeTotal = GetPipeNumForMetaAddressing(pIn->cMaskFlags.pipeAligned,
pIn->swizzleMode);
UINT_32 numRbTotal = pIn->cMaskFlags.rbAligned ? m_se * m_rbPerSe : 1;
UINT_32 numCompressBlkPerMetaBlkLog2, numCompressBlkPerMetaBlk;
if ((numPipeTotal == 1) && (numRbTotal == 1))
{
numCompressBlkPerMetaBlkLog2 = 13;
}
else
{
numCompressBlkPerMetaBlkLog2 = m_seLog2 + m_rbPerSeLog2 + 10;
numCompressBlkPerMetaBlkLog2 = Max(numCompressBlkPerMetaBlkLog2, 13u);
}
numCompressBlkPerMetaBlk = 1 << numCompressBlkPerMetaBlkLog2;
Dim2d metaBlkDim = {8, 8};
UINT_32 totalAmpBits = numCompressBlkPerMetaBlkLog2;
UINT_32 heightAmp = totalAmpBits >> 1;
UINT_32 widthAmp = totalAmpBits - heightAmp;
metaBlkDim.w <<= widthAmp;
metaBlkDim.h <<= heightAmp;
#if DEBUG
Dim2d metaBlkDimDbg = {8, 8};
for (UINT_32 index = 0; index < numCompressBlkPerMetaBlkLog2; index++)
{
if (metaBlkDimDbg.h < metaBlkDimDbg.w)
{
metaBlkDimDbg.h <<= 1;
}
else
{
metaBlkDimDbg.w <<= 1;
}
}
ADDR_ASSERT((metaBlkDimDbg.w == metaBlkDim.w) && (metaBlkDimDbg.h == metaBlkDim.h));
#endif
UINT_32 numMetaBlkX = (pIn->unalignedWidth + metaBlkDim.w - 1) / metaBlkDim.w;
UINT_32 numMetaBlkY = (pIn->unalignedHeight + metaBlkDim.h - 1) / metaBlkDim.h;
UINT_32 numMetaBlkZ = Max(pIn->numSlices, 1u);
UINT_32 sizeAlign = numPipeTotal * numRbTotal * m_pipeInterleaveBytes;
pOut->pitch = numMetaBlkX * metaBlkDim.w;
pOut->height = numMetaBlkY * metaBlkDim.h;
pOut->sliceSize = (numMetaBlkX * numMetaBlkY * numCompressBlkPerMetaBlk) >> 1;
pOut->cmaskBytes = PowTwoAlign(pOut->sliceSize * numMetaBlkZ, sizeAlign);
pOut->baseAlign = Max(numCompressBlkPerMetaBlk >> 1, sizeAlign);
if (m_settings.metaBaseAlignFix)
{
pOut->baseAlign = Max(pOut->baseAlign, HwlComputeSurfaceBaseAlign(pIn->swizzleMode));
}
pOut->metaBlkWidth = metaBlkDim.w;
pOut->metaBlkHeight = metaBlkDim.h;
pOut->metaBlkNumPerSlice = numMetaBlkX * numMetaBlkY;
return ADDR_OK;
}
/**
****************************************************************************************************
* Gfx9Lib::GetMetaMipInfo
*
* @brief
* Get meta mip info
*
* @return
* N/A
****************************************************************************************************
*/
VOID Gfx9Lib::GetMetaMipInfo(
UINT_32 numMipLevels, ///< [in] number of mip levels
Dim3d* pMetaBlkDim, ///< [in] meta block dimension
BOOL_32 dataThick, ///< [in] data surface is thick
ADDR2_META_MIP_INFO* pInfo, ///< [out] meta mip info
UINT_32 mip0Width, ///< [in] mip0 width
UINT_32 mip0Height, ///< [in] mip0 height
UINT_32 mip0Depth, ///< [in] mip0 depth
UINT_32* pNumMetaBlkX, ///< [out] number of metablock X in mipchain
UINT_32* pNumMetaBlkY, ///< [out] number of metablock Y in mipchain
UINT_32* pNumMetaBlkZ) ///< [out] number of metablock Z in mipchain
const
{
UINT_32 numMetaBlkX = (mip0Width + pMetaBlkDim->w - 1) / pMetaBlkDim->w;
UINT_32 numMetaBlkY = (mip0Height + pMetaBlkDim->h - 1) / pMetaBlkDim->h;
UINT_32 numMetaBlkZ = (mip0Depth + pMetaBlkDim->d - 1) / pMetaBlkDim->d;
UINT_32 tailWidth = pMetaBlkDim->w;
UINT_32 tailHeight = pMetaBlkDim->h >> 1;
UINT_32 tailDepth = pMetaBlkDim->d;
BOOL_32 inTail = FALSE;
AddrMajorMode major = ADDR_MAJOR_MAX_TYPE;
if (numMipLevels > 1)
{
if (dataThick && (numMetaBlkZ > numMetaBlkX) && (numMetaBlkZ > numMetaBlkY))
{
// Z major
major = ADDR_MAJOR_Z;
}
else if (numMetaBlkX >= numMetaBlkY)
{
// X major
major = ADDR_MAJOR_X;
}
else
{
// Y major
major = ADDR_MAJOR_Y;
}
inTail = ((mip0Width <= tailWidth) &&
(mip0Height <= tailHeight) &&
((dataThick == FALSE) || (mip0Depth <= tailDepth)));
if (inTail == FALSE)
{
UINT_32 orderLimit;
UINT_32 *pMipDim;
UINT_32 *pOrderDim;
if (major == ADDR_MAJOR_Z)
{
// Z major
pMipDim = &numMetaBlkY;
pOrderDim = &numMetaBlkZ;
orderLimit = 4;
}
else if (major == ADDR_MAJOR_X)
{
// X major
pMipDim = &numMetaBlkY;
pOrderDim = &numMetaBlkX;
orderLimit = 4;
}
else
{
// Y major
pMipDim = &numMetaBlkX;
pOrderDim = &numMetaBlkY;
orderLimit = 2;
}
if ((*pMipDim < 3) && (*pOrderDim > orderLimit) && (numMipLevels > 3))
{
*pMipDim += 2;
}
else
{
*pMipDim += ((*pMipDim / 2) + (*pMipDim & 1));
}
}
}
if (pInfo != NULL)
{
UINT_32 mipWidth = mip0Width;
UINT_32 mipHeight = mip0Height;
UINT_32 mipDepth = mip0Depth;
Dim3d mipCoord = {0};
for (UINT_32 mip = 0; mip < numMipLevels; mip++)
{
if (inTail)
{
GetMetaMiptailInfo(&pInfo[mip], mipCoord, numMipLevels - mip,
pMetaBlkDim);
break;
}
else
{
mipWidth = PowTwoAlign(mipWidth, pMetaBlkDim->w);
mipHeight = PowTwoAlign(mipHeight, pMetaBlkDim->h);
mipDepth = PowTwoAlign(mipDepth, pMetaBlkDim->d);
pInfo[mip].inMiptail = FALSE;
pInfo[mip].startX = mipCoord.w;
pInfo[mip].startY = mipCoord.h;
pInfo[mip].startZ = mipCoord.d;
pInfo[mip].width = mipWidth;
pInfo[mip].height = mipHeight;
pInfo[mip].depth = dataThick ? mipDepth : 1;
if ((mip >= 3) || (mip & 1))
{
switch (major)
{
case ADDR_MAJOR_X:
mipCoord.w += mipWidth;
break;
case ADDR_MAJOR_Y:
mipCoord.h += mipHeight;
break;
case ADDR_MAJOR_Z:
mipCoord.d += mipDepth;
break;
default:
break;
}
}
else
{
switch (major)
{
case ADDR_MAJOR_X:
mipCoord.h += mipHeight;
break;
case ADDR_MAJOR_Y:
mipCoord.w += mipWidth;
break;
case ADDR_MAJOR_Z:
mipCoord.h += mipHeight;
break;
default:
break;
}
}
mipWidth = Max(mipWidth >> 1, 1u);
mipHeight = Max(mipHeight >> 1, 1u);
mipDepth = Max(mipDepth >> 1, 1u);
inTail = ((mipWidth <= tailWidth) &&
(mipHeight <= tailHeight) &&
((dataThick == FALSE) || (mipDepth <= tailDepth)));
}
}
}
*pNumMetaBlkX = numMetaBlkX;
*pNumMetaBlkY = numMetaBlkY;
*pNumMetaBlkZ = numMetaBlkZ;
}
/**
****************************************************************************************************
* Gfx9Lib::HwlComputeDccInfo
*
* @brief
* Interface function to compute DCC key info
*
* @return
* ADDR_E_RETURNCODE
****************************************************************************************************
*/
ADDR_E_RETURNCODE Gfx9Lib::HwlComputeDccInfo(
const ADDR2_COMPUTE_DCCINFO_INPUT* pIn, ///< [in] input structure
ADDR2_COMPUTE_DCCINFO_OUTPUT* pOut ///< [out] output structure
) const
{
BOOL_32 dataLinear = IsLinear(pIn->swizzleMode);
BOOL_32 metaLinear = pIn->dccKeyFlags.linear;
BOOL_32 pipeAligned = pIn->dccKeyFlags.pipeAligned;
if (dataLinear)
{
metaLinear = TRUE;
}
else if (metaLinear == TRUE)
{
pipeAligned = FALSE;
}
UINT_32 numPipeTotal = GetPipeNumForMetaAddressing(pipeAligned, pIn->swizzleMode);
if (metaLinear)
{
// Linear metadata supporting was removed for GFX9! No one can use this feature on GFX9.
ADDR_ASSERT_ALWAYS();
pOut->dccRamBaseAlign = numPipeTotal * m_pipeInterleaveBytes;
pOut->dccRamSize = PowTwoAlign((pIn->dataSurfaceSize / 256), pOut->dccRamBaseAlign);
}
else
{
BOOL_32 dataThick = IsThick(pIn->resourceType, pIn->swizzleMode);
UINT_32 minMetaBlkSize = dataThick ? 65536 : 4096;
UINT_32 numFrags = (pIn->numFrags == 0) ? 1 : pIn->numFrags;
UINT_32 numSlices = (pIn->numSlices == 0) ? 1 : pIn->numSlices;
minMetaBlkSize /= numFrags;
UINT_32 numCompressBlkPerMetaBlk = minMetaBlkSize;
UINT_32 numRbTotal = pIn->dccKeyFlags.rbAligned ? m_se * m_rbPerSe : 1;
if ((numPipeTotal > 1) || (numRbTotal > 1))
{
numCompressBlkPerMetaBlk =
Max(numCompressBlkPerMetaBlk, m_se * m_rbPerSe * (dataThick ? 262144 : 1024));
if (numCompressBlkPerMetaBlk > 65536 * pIn->bpp)
{
numCompressBlkPerMetaBlk = 65536 * pIn->bpp;
}
}
Dim3d compressBlkDim = GetDccCompressBlk(pIn->resourceType, pIn->swizzleMode, pIn->bpp);
Dim3d metaBlkDim = compressBlkDim;
for (UINT_32 index = 1; index < numCompressBlkPerMetaBlk; index <<= 1)
{
if ((metaBlkDim.h < metaBlkDim.w) ||
((pIn->numMipLevels > 1) && (metaBlkDim.h == metaBlkDim.w)))
{
if ((dataThick == FALSE) || (metaBlkDim.h <= metaBlkDim.d))
{
metaBlkDim.h <<= 1;
}
else
{
metaBlkDim.d <<= 1;
}
}
else
{
if ((dataThick == FALSE) || (metaBlkDim.w <= metaBlkDim.d))
{
metaBlkDim.w <<= 1;
}
else
{
metaBlkDim.d <<= 1;
}
}
}
UINT_32 numMetaBlkX;
UINT_32 numMetaBlkY;
UINT_32 numMetaBlkZ;
GetMetaMipInfo(pIn->numMipLevels, &metaBlkDim, dataThick, pOut->pMipInfo,
pIn->unalignedWidth, pIn->unalignedHeight, numSlices,
&numMetaBlkX, &numMetaBlkY, &numMetaBlkZ);
UINT_32 sizeAlign = numPipeTotal * numRbTotal * m_pipeInterleaveBytes;
if (numFrags > m_maxCompFrag)
{
sizeAlign *= (numFrags / m_maxCompFrag);
}
pOut->dccRamSize = numMetaBlkX * numMetaBlkY * numMetaBlkZ *
numCompressBlkPerMetaBlk * numFrags;
pOut->dccRamSize = PowTwoAlign(pOut->dccRamSize, sizeAlign);
pOut->dccRamBaseAlign = Max(numCompressBlkPerMetaBlk, sizeAlign);
if (m_settings.metaBaseAlignFix)
{
pOut->dccRamBaseAlign = Max(pOut->dccRamBaseAlign, HwlComputeSurfaceBaseAlign(pIn->swizzleMode));
}
pOut->pitch = numMetaBlkX * metaBlkDim.w;
pOut->height = numMetaBlkY * metaBlkDim.h;
pOut->depth = numMetaBlkZ * metaBlkDim.d;
pOut->compressBlkWidth = compressBlkDim.w;
pOut->compressBlkHeight = compressBlkDim.h;
pOut->compressBlkDepth = compressBlkDim.d;
pOut->metaBlkWidth = metaBlkDim.w;
pOut->metaBlkHeight = metaBlkDim.h;
pOut->metaBlkDepth = metaBlkDim.d;
pOut->metaBlkNumPerSlice = numMetaBlkX * numMetaBlkY;
pOut->fastClearSizePerSlice =
pOut->metaBlkNumPerSlice * numCompressBlkPerMetaBlk * Min(numFrags, m_maxCompFrag);
}
return ADDR_OK;
}
/**
****************************************************************************************************
* Gfx9Lib::HwlGetMaxAlignments
*
* @brief
* Gets maximum alignments
* @return
* ADDR_E_RETURNCODE
****************************************************************************************************
*/
ADDR_E_RETURNCODE Gfx9Lib::HwlGetMaxAlignments(
ADDR_GET_MAX_ALINGMENTS_OUTPUT* pOut ///< [out] output structure
) const
{
pOut->baseAlign = HwlComputeSurfaceBaseAlign(ADDR_SW_64KB);
return ADDR_OK;
}
/**
****************************************************************************************************
* Gfx9Lib::HwlComputeCmaskAddrFromCoord
*
* @brief
* Interface function stub of AddrComputeCmaskAddrFromCoord
*
* @return
* ADDR_E_RETURNCODE
****************************************************************************************************
*/
ADDR_E_RETURNCODE Gfx9Lib::HwlComputeCmaskAddrFromCoord(
const ADDR2_COMPUTE_CMASK_ADDRFROMCOORD_INPUT* pIn, ///< [in] input structure
ADDR2_COMPUTE_CMASK_ADDRFROMCOORD_OUTPUT* pOut ///< [out] output structure
) const
{
ADDR2_COMPUTE_CMASK_INFO_INPUT input;
ADDR2_COMPUTE_CMASK_INFO_OUTPUT output;
memset(&input, 0, sizeof(ADDR2_COMPUTE_CMASK_INFO_INPUT));
input.size = sizeof(ADDR2_COMPUTE_CMASK_INFO_INPUT);
input.cMaskFlags = pIn->cMaskFlags;
input.colorFlags = pIn->colorFlags;
input.unalignedWidth = Max(pIn->unalignedWidth, 1u);
input.unalignedHeight = Max(pIn->unalignedHeight, 1u);
input.numSlices = Max(pIn->numSlices, 1u);
input.swizzleMode = pIn->swizzleMode;
input.resourceType = pIn->resourceType;
memset(&output, 0, sizeof(ADDR2_COMPUTE_CMASK_INFO_OUTPUT));
output.size = sizeof(ADDR2_COMPUTE_CMASK_INFO_OUTPUT);
ADDR_E_RETURNCODE returnCode = ComputeCmaskInfo(&input, &output);
if (returnCode == ADDR_OK)
{
UINT_32 fmaskBpp = GetFmaskBpp(pIn->numSamples, pIn->numFrags);
UINT_32 fmaskElementBytesLog2 = Log2(fmaskBpp >> 3);
UINT_32 metaBlkWidthLog2 = Log2(output.metaBlkWidth);
UINT_32 metaBlkHeightLog2 = Log2(output.metaBlkHeight);
CoordEq metaEq;
GetMetaEquation(&metaEq, 0, fmaskElementBytesLog2, 0, pIn->cMaskFlags,
Gfx9DataFmask, pIn->swizzleMode, pIn->resourceType,
metaBlkWidthLog2, metaBlkHeightLog2, 0, 3, 3, 0);
UINT_32 xb = pIn->x / output.metaBlkWidth;
UINT_32 yb = pIn->y / output.metaBlkHeight;
UINT_32 zb = pIn->slice;
UINT_32 pitchInBlock = output.pitch / output.metaBlkWidth;
UINT_32 sliceSizeInBlock = (output.height / output.metaBlkHeight) * pitchInBlock;
UINT_32 blockIndex = zb * sliceSizeInBlock + yb * pitchInBlock + xb;
UINT_64 address = metaEq.solve(pIn->x, pIn->y, pIn->slice, 0, blockIndex);
pOut->addr = address >> 1;
pOut->bitPosition = static_cast<UINT_32>((address & 1) << 2);
UINT_32 numPipeBits = GetPipeLog2ForMetaAddressing(pIn->cMaskFlags.pipeAligned,
pIn->swizzleMode);
UINT_64 pipeXor = static_cast<UINT_64>(pIn->pipeXor & ((1 << numPipeBits) - 1));
pOut->addr ^= (pipeXor << m_pipeInterleaveLog2);
}
return returnCode;
}
/**
****************************************************************************************************
* Gfx9Lib::HwlComputeHtileAddrFromCoord
*
* @brief
* Interface function stub of AddrComputeHtileAddrFromCoord
*
* @return
* ADDR_E_RETURNCODE
****************************************************************************************************
*/
ADDR_E_RETURNCODE Gfx9Lib::HwlComputeHtileAddrFromCoord(
const ADDR2_COMPUTE_HTILE_ADDRFROMCOORD_INPUT* pIn, ///< [in] input structure
ADDR2_COMPUTE_HTILE_ADDRFROMCOORD_OUTPUT* pOut ///< [out] output structure
) const
{
ADDR_E_RETURNCODE returnCode = ADDR_OK;
if (pIn->numMipLevels > 1)
{
returnCode = ADDR_NOTIMPLEMENTED;
}
else
{
ADDR2_COMPUTE_HTILE_INFO_INPUT input;
ADDR2_COMPUTE_HTILE_INFO_OUTPUT output;
memset(&input, 0, sizeof(ADDR2_COMPUTE_HTILE_INFO_INPUT));
input.size = sizeof(ADDR2_COMPUTE_HTILE_INFO_INPUT);
input.hTileFlags = pIn->hTileFlags;
input.depthFlags = pIn->depthflags;
input.swizzleMode = pIn->swizzleMode;
input.unalignedWidth = Max(pIn->unalignedWidth, 1u);
input.unalignedHeight = Max(pIn->unalignedHeight, 1u);
input.numSlices = Max(pIn->numSlices, 1u);
input.numMipLevels = Max(pIn->numMipLevels, 1u);
memset(&output, 0, sizeof(ADDR2_COMPUTE_HTILE_INFO_OUTPUT));
output.size = sizeof(ADDR2_COMPUTE_HTILE_INFO_OUTPUT);
returnCode = ComputeHtileInfo(&input, &output);
if (returnCode == ADDR_OK)
{
UINT_32 elementBytesLog2 = Log2(pIn->bpp >> 3);
UINT_32 metaBlkWidthLog2 = Log2(output.metaBlkWidth);
UINT_32 metaBlkHeightLog2 = Log2(output.metaBlkHeight);
UINT_32 numSamplesLog2 = Log2(pIn->numSamples);
CoordEq metaEq;
GetMetaEquation(&metaEq, 0, elementBytesLog2, numSamplesLog2, pIn->hTileFlags,
Gfx9DataDepthStencil, pIn->swizzleMode, ADDR_RSRC_TEX_2D,
metaBlkWidthLog2, metaBlkHeightLog2, 0, 3, 3, 0);
UINT_32 xb = pIn->x / output.metaBlkWidth;
UINT_32 yb = pIn->y / output.metaBlkHeight;
UINT_32 zb = pIn->slice;
UINT_32 pitchInBlock = output.pitch / output.metaBlkWidth;
UINT_32 sliceSizeInBlock = (output.height / output.metaBlkHeight) * pitchInBlock;
UINT_32 blockIndex = zb * sliceSizeInBlock + yb * pitchInBlock + xb;
UINT_64 address = metaEq.solve(pIn->x, pIn->y, pIn->slice, 0, blockIndex);
pOut->addr = address >> 1;
UINT_32 numPipeBits = GetPipeLog2ForMetaAddressing(pIn->hTileFlags.pipeAligned,
pIn->swizzleMode);
UINT_64 pipeXor = static_cast<UINT_64>(pIn->pipeXor & ((1 << numPipeBits) - 1));
pOut->addr ^= (pipeXor << m_pipeInterleaveLog2);
}
}
return returnCode;
}
/**
****************************************************************************************************
* Gfx9Lib::HwlComputeHtileCoordFromAddr
*
* @brief
* Interface function stub of AddrComputeHtileCoordFromAddr
*
* @return
* ADDR_E_RETURNCODE
****************************************************************************************************
*/
ADDR_E_RETURNCODE Gfx9Lib::HwlComputeHtileCoordFromAddr(
const ADDR2_COMPUTE_HTILE_COORDFROMADDR_INPUT* pIn, ///< [in] input structure
ADDR2_COMPUTE_HTILE_COORDFROMADDR_OUTPUT* pOut ///< [out] output structure
) const
{
ADDR_E_RETURNCODE returnCode = ADDR_OK;
if (pIn->numMipLevels > 1)
{
returnCode = ADDR_NOTIMPLEMENTED;
}
else
{
ADDR2_COMPUTE_HTILE_INFO_INPUT input;
ADDR2_COMPUTE_HTILE_INFO_OUTPUT output;
memset(&input, 0, sizeof(ADDR2_COMPUTE_HTILE_INFO_INPUT));
input.size = sizeof(ADDR2_COMPUTE_HTILE_INFO_INPUT);
input.hTileFlags = pIn->hTileFlags;
input.swizzleMode = pIn->swizzleMode;
input.unalignedWidth = Max(pIn->unalignedWidth, 1u);
input.unalignedHeight = Max(pIn->unalignedHeight, 1u);
input.numSlices = Max(pIn->numSlices, 1u);
input.numMipLevels = Max(pIn->numMipLevels, 1u);
memset(&output, 0, sizeof(ADDR2_COMPUTE_HTILE_INFO_OUTPUT));
output.size = sizeof(ADDR2_COMPUTE_HTILE_INFO_OUTPUT);
returnCode = ComputeHtileInfo(&input, &output);
if (returnCode == ADDR_OK)
{
UINT_32 elementBytesLog2 = Log2(pIn->bpp >> 3);
UINT_32 metaBlkWidthLog2 = Log2(output.metaBlkWidth);
UINT_32 metaBlkHeightLog2 = Log2(output.metaBlkHeight);
UINT_32 numSamplesLog2 = Log2(pIn->numSamples);
CoordEq metaEq;
GetMetaEquation(&metaEq, 0, elementBytesLog2, numSamplesLog2, pIn->hTileFlags,
Gfx9DataDepthStencil, pIn->swizzleMode, ADDR_RSRC_TEX_2D,
metaBlkWidthLog2, metaBlkHeightLog2, 0, 3, 3, 0);
UINT_32 numPipeBits = GetPipeLog2ForMetaAddressing(pIn->hTileFlags.pipeAligned,
pIn->swizzleMode);
UINT_64 pipeXor = static_cast<UINT_64>(pIn->pipeXor & ((1 << numPipeBits) - 1));
UINT_64 nibbleAddress = (pIn->addr ^ (pipeXor << m_pipeInterleaveLog2)) << 1;
UINT_32 pitchInBlock = output.pitch / output.metaBlkWidth;
UINT_32 sliceSizeInBlock = (output.height / output.metaBlkHeight) * pitchInBlock;
UINT_32 x, y, z, s, m;
metaEq.solveAddr(nibbleAddress, sliceSizeInBlock, x, y, z, s, m);
pOut->slice = m / sliceSizeInBlock;
pOut->y = ((m % sliceSizeInBlock) / pitchInBlock) * output.metaBlkHeight + y;
pOut->x = (m % pitchInBlock) * output.metaBlkWidth + x;
}
}
return returnCode;
}
/**
****************************************************************************************************
* Gfx9Lib::HwlInitGlobalParams
*
* @brief
* Initializes global parameters
*
* @return
* TRUE if all settings are valid
*
****************************************************************************************************
*/
BOOL_32 Gfx9Lib::HwlInitGlobalParams(
const ADDR_CREATE_INPUT* pCreateIn) ///< [in] create input
{
BOOL_32 valid = TRUE;
if (m_settings.isArcticIsland)
{
GB_ADDR_CONFIG gbAddrConfig;
gbAddrConfig.u32All = pCreateIn->regValue.gbAddrConfig;
// These values are copied from CModel code
switch (gbAddrConfig.bits.NUM_PIPES)
{
case ADDR_CONFIG_1_PIPE:
m_pipes = 1;
m_pipesLog2 = 0;
break;
case ADDR_CONFIG_2_PIPE:
m_pipes = 2;
m_pipesLog2 = 1;
break;
case ADDR_CONFIG_4_PIPE:
m_pipes = 4;
m_pipesLog2 = 2;
break;
case ADDR_CONFIG_8_PIPE:
m_pipes = 8;
m_pipesLog2 = 3;
break;
case ADDR_CONFIG_16_PIPE:
m_pipes = 16;
m_pipesLog2 = 4;
break;
case ADDR_CONFIG_32_PIPE:
m_pipes = 32;
m_pipesLog2 = 5;
break;
default:
break;
}
switch (gbAddrConfig.bits.PIPE_INTERLEAVE_SIZE)
{
case ADDR_CONFIG_PIPE_INTERLEAVE_256B:
m_pipeInterleaveBytes = ADDR_PIPEINTERLEAVE_256B;
m_pipeInterleaveLog2 = 8;
break;
case ADDR_CONFIG_PIPE_INTERLEAVE_512B:
m_pipeInterleaveBytes = ADDR_PIPEINTERLEAVE_512B;
m_pipeInterleaveLog2 = 9;
break;
case ADDR_CONFIG_PIPE_INTERLEAVE_1KB:
m_pipeInterleaveBytes = ADDR_PIPEINTERLEAVE_1KB;
m_pipeInterleaveLog2 = 10;
break;
case ADDR_CONFIG_PIPE_INTERLEAVE_2KB:
m_pipeInterleaveBytes = ADDR_PIPEINTERLEAVE_2KB;
m_pipeInterleaveLog2 = 11;
break;
default:
break;
}
switch (gbAddrConfig.bits.NUM_BANKS)
{
case ADDR_CONFIG_1_BANK:
m_banks = 1;
m_banksLog2 = 0;
break;
case ADDR_CONFIG_2_BANK:
m_banks = 2;
m_banksLog2 = 1;
break;
case ADDR_CONFIG_4_BANK:
m_banks = 4;
m_banksLog2 = 2;
break;
case ADDR_CONFIG_8_BANK:
m_banks = 8;
m_banksLog2 = 3;
break;
case ADDR_CONFIG_16_BANK:
m_banks = 16;
m_banksLog2 = 4;
break;
default:
break;
}
switch (gbAddrConfig.bits.NUM_SHADER_ENGINES)
{
case ADDR_CONFIG_1_SHADER_ENGINE:
m_se = 1;
m_seLog2 = 0;
break;
case ADDR_CONFIG_2_SHADER_ENGINE:
m_se = 2;
m_seLog2 = 1;
break;
case ADDR_CONFIG_4_SHADER_ENGINE:
m_se = 4;
m_seLog2 = 2;
break;
case ADDR_CONFIG_8_SHADER_ENGINE:
m_se = 8;
m_seLog2 = 3;
break;
default:
break;
}
switch (gbAddrConfig.bits.NUM_RB_PER_SE)
{
case ADDR_CONFIG_1_RB_PER_SHADER_ENGINE:
m_rbPerSe = 1;
m_rbPerSeLog2 = 0;
break;
case ADDR_CONFIG_2_RB_PER_SHADER_ENGINE:
m_rbPerSe = 2;
m_rbPerSeLog2 = 1;
break;
case ADDR_CONFIG_4_RB_PER_SHADER_ENGINE:
m_rbPerSe = 4;
m_rbPerSeLog2 = 2;
break;
default:
break;
}
switch (gbAddrConfig.bits.MAX_COMPRESSED_FRAGS)
{
case ADDR_CONFIG_1_MAX_COMPRESSED_FRAGMENTS:
m_maxCompFrag = 1;
m_maxCompFragLog2 = 0;
break;
case ADDR_CONFIG_2_MAX_COMPRESSED_FRAGMENTS:
m_maxCompFrag = 2;
m_maxCompFragLog2 = 1;
break;
case ADDR_CONFIG_4_MAX_COMPRESSED_FRAGMENTS:
m_maxCompFrag = 4;
m_maxCompFragLog2 = 2;
break;
case ADDR_CONFIG_8_MAX_COMPRESSED_FRAGMENTS:
m_maxCompFrag = 8;
m_maxCompFragLog2 = 3;
break;
default:
break;
}
m_blockVarSizeLog2 = pCreateIn->regValue.blockVarSizeLog2;
ADDR_ASSERT((m_blockVarSizeLog2 == 0) ||
((m_blockVarSizeLog2 >= 17u) && (m_blockVarSizeLog2 <= 20u)));
m_blockVarSizeLog2 = Min(Max(17u, m_blockVarSizeLog2), 20u);
}
else
{
valid = FALSE;
ADDR_NOT_IMPLEMENTED();
}
if (valid)
{
InitEquationTable();
}
return valid;
}
/**
****************************************************************************************************
* Gfx9Lib::HwlConvertChipFamily
*
* @brief
* Convert familyID defined in atiid.h to ChipFamily and set m_chipFamily/m_chipRevision
* @return
* ChipFamily
****************************************************************************************************
*/
ChipFamily Gfx9Lib::HwlConvertChipFamily(
UINT_32 uChipFamily, ///< [in] chip family defined in atiih.h
UINT_32 uChipRevision) ///< [in] chip revision defined in "asic_family"_id.h
{
ChipFamily family = ADDR_CHIP_FAMILY_AI;
switch (uChipFamily)
{
case FAMILY_AI:
m_settings.isArcticIsland = 1;
m_settings.isVega10 = ASICREV_IS_VEGA10_P(uChipRevision);
if (m_settings.isVega10)
{
m_settings.isDce12 = 1;
}
// Bug ID DEGGIGX90-1056
m_settings.metaBaseAlignFix = 1;
break;
default:
ADDR_ASSERT(!"This should be a Fusion");
break;
}
return family;
}
/**
****************************************************************************************************
* Gfx9Lib::InitRbEquation
*
* @brief
* Init RB equation
* @return
* N/A
****************************************************************************************************
*/
VOID Gfx9Lib::GetRbEquation(
CoordEq* pRbEq, ///< [out] rb equation
UINT_32 numRbPerSeLog2, ///< [in] number of rb per shader engine
UINT_32 numSeLog2) ///< [in] number of shader engine
{
// RB's are distributed on 16x16, except when we have 1 rb per se, in which case its 32x32
UINT_32 rbRegion = (numRbPerSeLog2 == 0) ? 5 : 4;
Coordinate cx('x', rbRegion);
Coordinate cy('y', rbRegion);
UINT_32 start = 0;
UINT_32 numRbTotalLog2 = numRbPerSeLog2 + numSeLog2;
// Clear the rb equation
pRbEq->resize(0);
pRbEq->resize(numRbTotalLog2);
if ((numSeLog2 > 0) && (numRbPerSeLog2 == 1))
{
// Special case when more than 1 SE, and 2 RB per SE
(*pRbEq)[0].add(cx);
(*pRbEq)[0].add(cy);
cx++;
cy++;
(*pRbEq)[0].add(cy);
start++;
}
UINT_32 numBits = 2 * (numRbTotalLog2 - start);
for (UINT_32 i = 0; i < numBits; i++)
{
UINT_32 idx =
start + (((start + i) >= numRbTotalLog2) ? (2 * (numRbTotalLog2 - start) - i - 1) : i);
if ((i % 2) == 1)
{
(*pRbEq)[idx].add(cx);
cx++;
}
else
{
(*pRbEq)[idx].add(cy);
cy++;
}
}
}
/**
****************************************************************************************************
* Gfx9Lib::GetDataEquation
*
* @brief
* Get data equation for fmask and Z
* @return
* N/A
****************************************************************************************************
*/
VOID Gfx9Lib::GetDataEquation(
CoordEq* pDataEq, ///< [out] data surface equation
Gfx9DataType dataSurfaceType, ///< [in] data surface type
AddrSwizzleMode swizzleMode, ///< [in] data surface swizzle mode
AddrResourceType resourceType, ///< [in] data surface resource type
UINT_32 elementBytesLog2, ///< [in] data surface element bytes
UINT_32 numSamplesLog2) ///< [in] data surface sample count
const
{
Coordinate cx('x', 0);
Coordinate cy('y', 0);
Coordinate cz('z', 0);
Coordinate cs('s', 0);
// Clear the equation
pDataEq->resize(0);
pDataEq->resize(27);
if (dataSurfaceType == Gfx9DataColor)
{
if (IsLinear(swizzleMode))
{
Coordinate cm('m', 0);
pDataEq->resize(49);
for (UINT_32 i = 0; i < 49; i++)
{
(*pDataEq)[i].add(cm);
cm++;
}
}
else if (IsThick(resourceType, swizzleMode))
{
// Color 3d_S and 3d_Z modes, 3d_D is same as color 2d
UINT_32 i;
if (IsStandardSwizzle(resourceType, swizzleMode))
{
// Standard 3d swizzle
// Fill in bottom x bits
for (i = elementBytesLog2; i < 4; i++)
{
(*pDataEq)[i].add(cx);
cx++;
}
// Fill in 2 bits of y and then z
for (i = 4; i < 6; i++)
{
(*pDataEq)[i].add(cy);
cy++;
}
for (i = 6; i < 8; i++)
{
(*pDataEq)[i].add(cz);
cz++;
}
if (elementBytesLog2 < 2)
{
// fill in z & y bit
(*pDataEq)[8].add(cz);
(*pDataEq)[9].add(cy);
cz++;
cy++;
}
else if (elementBytesLog2 == 2)
{
// fill in y and x bit
(*pDataEq)[8].add(cy);
(*pDataEq)[9].add(cx);
cy++;
cx++;
}
else
{
// fill in 2 x bits
(*pDataEq)[8].add(cx);
cx++;
(*pDataEq)[9].add(cx);
cx++;
}
}
else
{
// Z 3d swizzle
UINT_32 m2dEnd = (elementBytesLog2 ==0) ? 3 : ((elementBytesLog2 < 4) ? 4 : 5);
UINT_32 numZs = (elementBytesLog2 == 0 || elementBytesLog2 == 4) ?
2 : ((elementBytesLog2 == 1) ? 3 : 1);
pDataEq->mort2d(cx, cy, elementBytesLog2, m2dEnd);
for (i = m2dEnd + 1; i <= m2dEnd + numZs; i++)
{
(*pDataEq)[i].add(cz);
cz++;
}
if ((elementBytesLog2 == 0) || (elementBytesLog2 == 3))
{
// add an x and z
(*pDataEq)[6].add(cx);
(*pDataEq)[7].add(cz);
cx++;
cz++;
}
else if (elementBytesLog2 == 2)
{
// add a y and z
(*pDataEq)[6].add(cy);
(*pDataEq)[7].add(cz);
cy++;
cz++;
}
// add y and x
(*pDataEq)[8].add(cy);
(*pDataEq)[9].add(cx);
cy++;
cx++;
}
// Fill in bit 10 and up
pDataEq->mort3d( cz, cy, cx, 10 );
}
else if (IsThin(resourceType, swizzleMode))
{
UINT_32 blockSizeLog2 = GetBlockSizeLog2(swizzleMode);
// Color 2D
UINT_32 microYBits = (8 - elementBytesLog2) / 2;
UINT_32 tileSplitStart = blockSizeLog2 - numSamplesLog2;
UINT_32 i;
// Fill in bottom x bits
for (i = elementBytesLog2; i < 4; i++)
{
(*pDataEq)[i].add(cx);
cx++;
}
// Fill in bottom y bits
for (i = 4; i < 4 + microYBits; i++)
{
(*pDataEq)[i].add(cy);
cy++;
}
// Fill in last of the micro_x bits
for (i = 4 + microYBits; i < 8; i++)
{
(*pDataEq)[i].add(cx);
cx++;
}
// Fill in x/y bits below sample split
pDataEq->mort2d(cy, cx, 8, tileSplitStart - 1);
// Fill in sample bits
for (i = 0; i < numSamplesLog2; i++)
{
cs.set('s', i);
(*pDataEq)[tileSplitStart + i].add(cs);
}
// Fill in x/y bits above sample split
if ((numSamplesLog2 & 1) ^ (blockSizeLog2 & 1))
{
pDataEq->mort2d(cx, cy, blockSizeLog2);
}
else
{
pDataEq->mort2d(cy, cx, blockSizeLog2);
}
}
else
{
ADDR_ASSERT_ALWAYS();
}
}
else
{
// Fmask or depth
UINT_32 sampleStart = elementBytesLog2;
UINT_32 pixelStart = elementBytesLog2 + numSamplesLog2;
UINT_32 ymajStart = 6 + numSamplesLog2;
for (UINT_32 s = 0; s < numSamplesLog2; s++)
{
cs.set('s', s);
(*pDataEq)[sampleStart + s].add(cs);
}
// Put in the x-major order pixel bits
pDataEq->mort2d(cx, cy, pixelStart, ymajStart - 1);
// Put in the y-major order pixel bits
pDataEq->mort2d(cy, cx, ymajStart);
}
}
/**
****************************************************************************************************
* Gfx9Lib::GetPipeEquation
*
* @brief
* Get pipe equation
* @return
* N/A
****************************************************************************************************
*/
VOID Gfx9Lib::GetPipeEquation(
CoordEq* pPipeEq, ///< [out] pipe equation
CoordEq* pDataEq, ///< [in] data equation
UINT_32 pipeInterleaveLog2, ///< [in] pipe interleave
UINT_32 numPipeLog2, ///< [in] number of pipes
UINT_32 numSamplesLog2, ///< [in] data surface sample count
Gfx9DataType dataSurfaceType, ///< [in] data surface type
AddrSwizzleMode swizzleMode, ///< [in] data surface swizzle mode
AddrResourceType resourceType ///< [in] data surface resource type
) const
{
UINT_32 blockSizeLog2 = GetBlockSizeLog2(swizzleMode);
CoordEq dataEq;
pDataEq->copy(dataEq);
if (dataSurfaceType == Gfx9DataColor)
{
INT_32 shift = static_cast<INT_32>(numSamplesLog2);
dataEq.shift(-shift, blockSizeLog2 - numSamplesLog2);
}
dataEq.copy(*pPipeEq, pipeInterleaveLog2, numPipeLog2);
// This section should only apply to z/stencil, maybe fmask
// If the pipe bit is below the comp block size,
// then keep moving up the address until we find a bit that is above
UINT_32 pipeStart = 0;
if (dataSurfaceType != Gfx9DataColor)
{
Coordinate tileMin('x', 3);
while (dataEq[pipeInterleaveLog2 + pipeStart][0] < tileMin)
{
pipeStart++;
}
// if pipe is 0, then the first pipe bit is above the comp block size,
// so we don't need to do anything
// Note, this if condition is not necessary, since if we execute the loop when pipe==0,
// we will get the same pipe equation
if (pipeStart != 0)
{
for (UINT_32 i = 0; i < numPipeLog2; i++)
{
// Copy the jth bit above pipe interleave to the current pipe equation bit
dataEq[pipeInterleaveLog2 + pipeStart + i].copyto((*pPipeEq)[i]);
}
}
}
if (IsPrt(swizzleMode))
{
// Clear out bits above the block size if prt's are enabled
dataEq.resize(blockSizeLog2);
dataEq.resize(48);
}
if (IsXor(swizzleMode))
{
CoordEq xorMask;
if (IsThick(resourceType, swizzleMode))
{
CoordEq xorMask2;
dataEq.copy(xorMask2, pipeInterleaveLog2 + numPipeLog2, 2 * numPipeLog2);
xorMask.resize(numPipeLog2);
for (UINT_32 pipeIdx = 0; pipeIdx < numPipeLog2; pipeIdx++)
{
xorMask[pipeIdx].add(xorMask2[2 * pipeIdx]);
xorMask[pipeIdx].add(xorMask2[2 * pipeIdx + 1]);
}
}
else
{
// Xor in the bits above the pipe+gpu bits
dataEq.copy(xorMask, pipeInterleaveLog2 + pipeStart + numPipeLog2, numPipeLog2);
if ((numSamplesLog2 == 0) && (IsPrt(swizzleMode) == FALSE))
{
Coordinate co;
CoordEq xorMask2;
// if 1xaa and not prt, then xor in the z bits
xorMask2.resize(0);
xorMask2.resize(numPipeLog2);
for (UINT_32 pipeIdx = 0; pipeIdx < numPipeLog2; pipeIdx++)
{
co.set('z', numPipeLog2 - 1 - pipeIdx);
xorMask2[pipeIdx].add(co);
}
pPipeEq->xorin(xorMask2);
}
}
xorMask.reverse();
pPipeEq->xorin(xorMask);
}
}
/**
****************************************************************************************************
* Gfx9Lib::GetMetaEquation
*
* @brief
* Get meta equation for cmask/htile/DCC
* @return
* N/A
****************************************************************************************************
*/
VOID Gfx9Lib::GetMetaEquation(
CoordEq* pMetaEq, ///< [out] meta equation
UINT_32 maxMip, ///< [in] max mip Id
UINT_32 elementBytesLog2, ///< [in] data surface element bytes
UINT_32 numSamplesLog2, ///< [in] data surface sample count
ADDR2_META_FLAGS metaFlag, ///< [in] meta falg
Gfx9DataType dataSurfaceType, ///< [in] data surface type
AddrSwizzleMode swizzleMode, ///< [in] data surface swizzle mode
AddrResourceType resourceType, ///< [in] data surface resource type
UINT_32 metaBlkWidthLog2, ///< [in] meta block width
UINT_32 metaBlkHeightLog2, ///< [in] meta block height
UINT_32 metaBlkDepthLog2, ///< [in] meta block depth
UINT_32 compBlkWidthLog2, ///< [in] compress block width
UINT_32 compBlkHeightLog2, ///< [in] compress block height
UINT_32 compBlkDepthLog2) ///< [in] compress block depth
const
{
UINT_32 numPipeTotalLog2 = GetPipeLog2ForMetaAddressing(metaFlag.pipeAligned, swizzleMode);
UINT_32 pipeInterleaveLog2 = m_pipeInterleaveLog2;
2017-03-14 22:32:25 +01:00
//UINT_32 blockSizeLog2 = GetBlockSizeLog2(swizzleMode);
2016-10-06 18:55:25 +02:00
// Get the correct data address and rb equation
CoordEq dataEq;
GetDataEquation(&dataEq, dataSurfaceType, swizzleMode, resourceType,
elementBytesLog2, numSamplesLog2);
// Get pipe and rb equations
CoordEq pipeEquation;
GetPipeEquation(&pipeEquation, &dataEq, pipeInterleaveLog2, numPipeTotalLog2,
numSamplesLog2, dataSurfaceType, swizzleMode, resourceType);
numPipeTotalLog2 = pipeEquation.getsize();
if (metaFlag.linear)
{
// Linear metadata supporting was removed for GFX9! No one can use this feature.
ADDR_ASSERT_ALWAYS();
ADDR_ASSERT(dataSurfaceType == Gfx9DataColor);
dataEq.copy(*pMetaEq);
if (IsLinear(swizzleMode))
{
if (metaFlag.pipeAligned)
{
// Remove the pipe bits
INT_32 shift = static_cast<INT_32>(numPipeTotalLog2);
pMetaEq->shift(-shift, pipeInterleaveLog2);
}
// Divide by comp block size, which for linear (which is always color) is 256 B
pMetaEq->shift(-8);
if (metaFlag.pipeAligned)
{
// Put pipe bits back in
pMetaEq->shift(numPipeTotalLog2, pipeInterleaveLog2);
for (UINT_32 i = 0; i < numPipeTotalLog2; i++)
{
pipeEquation[i].copyto((*pMetaEq)[pipeInterleaveLog2 + i]);
}
}
}
pMetaEq->shift(1);
}
else
{
UINT_32 maxCompFragLog2 = static_cast<INT_32>(m_maxCompFragLog2);
UINT_32 compFragLog2 =
((dataSurfaceType == Gfx9DataColor) && (numSamplesLog2 > maxCompFragLog2)) ?
maxCompFragLog2 : numSamplesLog2;
UINT_32 uncompFragLog2 = numSamplesLog2 - compFragLog2;
// Make sure the metaaddr is cleared
pMetaEq->resize(0);
pMetaEq->resize(27);
if (IsThick(resourceType, swizzleMode))
{
Coordinate cx('x', 0);
Coordinate cy('y', 0);
Coordinate cz('z', 0);
if (maxMip > 0)
{
pMetaEq->mort3d(cy, cx, cz);
}
else
{
pMetaEq->mort3d(cx, cy, cz);
}
}
else
{
Coordinate cx('x', 0);
Coordinate cy('y', 0);
Coordinate cs;
if (maxMip > 0)
{
pMetaEq->mort2d(cy, cx, compFragLog2);
}
else
{
pMetaEq->mort2d(cx, cy, compFragLog2);
}
//------------------------------------------------------------------------------------------------------------------------
// Put the compressible fragments at the lsb
// the uncompressible frags will be at the msb of the micro address
//------------------------------------------------------------------------------------------------------------------------
for (UINT_32 s = 0; s < compFragLog2; s++)
{
cs.set('s', s);
(*pMetaEq)[s].add(cs);
}
}
// Keep a copy of the pipe equations
CoordEq origPipeEquation;
pipeEquation.copy(origPipeEquation);
Coordinate co;
// filter out everything under the compressed block size
co.set('x', compBlkWidthLog2);
pMetaEq->Filter('<', co, 0, 'x');
co.set('y', compBlkHeightLog2);
pMetaEq->Filter('<', co, 0, 'y');
co.set('z', compBlkDepthLog2);
pMetaEq->Filter('<', co, 0, 'z');
// For non-color, filter out sample bits
if (dataSurfaceType != Gfx9DataColor)
{
co.set('x', 0);
pMetaEq->Filter('<', co, 0, 's');
}
// filter out everything above the metablock size
co.set('x', metaBlkWidthLog2 - 1);
pMetaEq->Filter('>', co, 0, 'x');
co.set('y', metaBlkHeightLog2 - 1);
pMetaEq->Filter('>', co, 0, 'y');
co.set('z', metaBlkDepthLog2 - 1);
pMetaEq->Filter('>', co, 0, 'z');
// filter out everything above the metablock size for the channel bits
co.set('x', metaBlkWidthLog2 - 1);
pipeEquation.Filter('>', co, 0, 'x');
co.set('y', metaBlkHeightLog2 - 1);
pipeEquation.Filter('>', co, 0, 'y');
co.set('z', metaBlkDepthLog2 - 1);
pipeEquation.Filter('>', co, 0, 'z');
// Make sure we still have the same number of channel bits
if (pipeEquation.getsize() != numPipeTotalLog2)
{
ADDR_ASSERT_ALWAYS();
}
// Loop through all channel and rb bits,
// and make sure these components exist in the metadata address
for (UINT_32 i = 0; i < numPipeTotalLog2; i++)
{
for (UINT_32 j = pipeEquation[i].getsize(); j > 0; j--)
{
if (pMetaEq->Exists(pipeEquation[i][j - 1]) == FALSE)
{
ADDR_ASSERT_ALWAYS();
}
}
}
UINT_32 numSeLog2 = metaFlag.rbAligned ? m_seLog2 : 0;
UINT_32 numRbPeSeLog2 = metaFlag.rbAligned ? m_rbPerSeLog2 : 0;
CoordEq origRbEquation;
GetRbEquation(&origRbEquation, numRbPeSeLog2, numSeLog2);
CoordEq rbEquation = origRbEquation;
UINT_32 numRbTotalLog2 = numRbPeSeLog2 + numSeLog2;
for (UINT_32 i = 0; i < numRbTotalLog2; i++)
{
for (UINT_32 j = rbEquation[i].getsize(); j > 0; j--)
{
if (pMetaEq->Exists(rbEquation[i][j - 1]) == FALSE)
{
ADDR_ASSERT_ALWAYS();
}
}
}
// Loop through each rb id bit; if it is equal to any of the filtered channel bits, clear it
for (UINT_32 i = 0; i < numRbTotalLog2; i++)
{
for (UINT_32 j = 0; j < numPipeTotalLog2; j++)
{
if (rbEquation[i] == pipeEquation[j])
{
rbEquation[i].Clear();
}
}
}
// Loop through each bit of the channel, get the smallest coordinate,
// and remove it from the metaaddr, and rb_equation
for (UINT_32 i = 0; i < numPipeTotalLog2; i++)
{
pipeEquation[i].getsmallest(co);
UINT_32 old_size = pMetaEq->getsize();
pMetaEq->Filter('=', co);
UINT_32 new_size = pMetaEq->getsize();
if (new_size != old_size-1)
{
ADDR_ASSERT_ALWAYS();
}
pipeEquation.remove(co);
for (UINT_32 j = 0; j < numRbTotalLog2; j++)
{
if (rbEquation[j].remove(co))
{
// if we actually removed something from this bit, then add the remaining
// channel bits, as these can be removed for this bit
for (UINT_32 k = 0; k < pipeEquation[i].getsize(); k++)
{
if (pipeEquation[i][k] != co)
{
rbEquation[j].add(pipeEquation[i][k]);
}
}
}
}
}
// Loop through the rb bits and see what remain;
// filter out the smallest coordinate if it remains
UINT_32 rbBitsLeft = 0;
for (UINT_32 i = 0; i < numRbTotalLog2; i++)
{
if (rbEquation[i].getsize() > 0)
{
rbBitsLeft++;
rbEquation[i].getsmallest(co);
UINT_32 old_size = pMetaEq->getsize();
pMetaEq->Filter('=', co);
UINT_32 new_size = pMetaEq->getsize();
if (new_size != old_size - 1)
{
// assert warning
}
for (UINT_32 j = i + 1; j < numRbTotalLog2; j++)
{
if (rbEquation[j].remove(co))
{
// if we actually removed something from this bit, then add the remaining
// rb bits, as these can be removed for this bit
for (UINT_32 k = 0; k < rbEquation[i].getsize(); k++)
{
if (rbEquation[i][k] != co)
{
rbEquation[j].add(rbEquation[i][k]);
}
}
}
}
}
}
// capture the size of the metaaddr
UINT_32 metaSize = pMetaEq->getsize();
// resize to 49 bits...make this a nibble address
pMetaEq->resize(49);
// Concatenate the macro address above the current address
for (UINT_32 i = metaSize, j = 0; i < 49; i++, j++)
{
co.set('m', j);
(*pMetaEq)[i].add(co);
}
// Multiply by meta element size (in nibbles)
if (dataSurfaceType == Gfx9DataColor)
{
pMetaEq->shift(1);
}
else if (dataSurfaceType == Gfx9DataDepthStencil)
{
pMetaEq->shift(3);
}
//------------------------------------------------------------------------------------------
// Note the pipeInterleaveLog2+1 is because address is a nibble address
// Shift up from pipe interleave number of channel
// and rb bits left, and uncompressed fragments
//------------------------------------------------------------------------------------------
pMetaEq->shift(numPipeTotalLog2 + rbBitsLeft + uncompFragLog2, pipeInterleaveLog2 + 1);
// Put in the channel bits
for (UINT_32 i = 0; i < numPipeTotalLog2; i++)
{
origPipeEquation[i].copyto((*pMetaEq)[pipeInterleaveLog2+1 + i]);
}
// Put in remaining rb bits
for (UINT_32 i = 0, j = 0; j < rbBitsLeft; i = (i + 1) % numRbTotalLog2)
{
if (rbEquation[i].getsize() > 0)
{
origRbEquation[i].copyto((*pMetaEq)[pipeInterleaveLog2 + 1 + numPipeTotalLog2 + j]);
// Mark any rb bit we add in to the rb mask
j++;
}
}
//------------------------------------------------------------------------------------------
// Put in the uncompressed fragment bits
//------------------------------------------------------------------------------------------
for (UINT_32 i = 0; i < uncompFragLog2; i++)
{
co.set('s', compFragLog2 + i);
(*pMetaEq)[pipeInterleaveLog2 + 1 + numPipeTotalLog2 + rbBitsLeft + i].add(co);
}
}
}
/**
****************************************************************************************************
* Gfx9Lib::IsEquationSupported
*
* @brief
* Check if equation is supported for given swizzle mode and resource type.
*
* @return
* TRUE if supported
****************************************************************************************************
*/
BOOL_32 Gfx9Lib::IsEquationSupported(
AddrResourceType rsrcType,
AddrSwizzleMode swMode,
UINT_32 elementBytesLog2) const
{
BOOL_32 supported = (elementBytesLog2 < MaxElementBytesLog2) &&
(IsLinear(swMode) == FALSE) &&
((IsTex2d(rsrcType) == TRUE) ||
((IsTex3d(rsrcType) == TRUE) &&
(IsRotateSwizzle(swMode) == FALSE) &&
(IsBlock256b(swMode) == FALSE)));
return supported;
}
/**
****************************************************************************************************
* Gfx9Lib::InitEquationTable
*
* @brief
* Initialize Equation table.
*
* @return
* N/A
****************************************************************************************************
*/
VOID Gfx9Lib::InitEquationTable()
{
memset(m_equationTable, 0, sizeof(m_equationTable));
// Loop all possible resource type (2D/3D)
for (UINT_32 rsrcTypeIdx = 0; rsrcTypeIdx < MaxRsrcType; rsrcTypeIdx++)
{
AddrResourceType rsrcType = static_cast<AddrResourceType>(rsrcTypeIdx + ADDR_RSRC_TEX_2D);
// Loop all possible swizzle mode
for (UINT_32 swModeIdx = 0; swModeIdx < MaxSwMode; swModeIdx++)
{
AddrSwizzleMode swMode = static_cast<AddrSwizzleMode>(swModeIdx);
// Loop all possible bpp
for (UINT_32 bppIdx = 0; bppIdx < MaxElementBytesLog2; bppIdx++)
{
UINT_32 equationIndex = ADDR_INVALID_EQUATION_INDEX;
// Check if the input is supported
if (IsEquationSupported(rsrcType, swMode, bppIdx))
{
ADDR_EQUATION equation;
ADDR_E_RETURNCODE retCode;
memset(&equation, 0, sizeof(ADDR_EQUATION));
// Generate the equation
if (IsBlock256b(swMode) && IsTex2d(rsrcType))
{
retCode = ComputeBlock256Equation(rsrcType, swMode, bppIdx, &equation);
}
else if (IsThin(rsrcType, swMode))
{
retCode = ComputeThinEquation(rsrcType, swMode, bppIdx, &equation);
}
else
{
retCode = ComputeThickEquation(rsrcType, swMode, bppIdx, &equation);
}
// Only fill the equation into the table if the return code is ADDR_OK,
// otherwise if the return code is not ADDR_OK, it indicates this is not
// a valid input, we do nothing but just fill invalid equation index
// into the lookup table.
if (retCode == ADDR_OK)
{
equationIndex = m_numEquations;
ADDR_ASSERT(equationIndex < EquationTableSize);
m_equationTable[equationIndex] = equation;
m_numEquations++;
}
}
// Fill the index into the lookup table, if the combination is not supported
// fill the invalid equation index
m_equationLookupTable[rsrcTypeIdx][swModeIdx][bppIdx] = equationIndex;
}
}
}
}
/**
****************************************************************************************************
* Gfx9Lib::HwlGetEquationIndex
*
* @brief
* Interface function stub of GetEquationIndex
*
* @return
* ADDR_E_RETURNCODE
****************************************************************************************************
*/
UINT_32 Gfx9Lib::HwlGetEquationIndex(
const ADDR2_COMPUTE_SURFACE_INFO_INPUT* pIn,
ADDR2_COMPUTE_SURFACE_INFO_OUTPUT* pOut
) const
{
AddrResourceType rsrcType = pIn->resourceType;
AddrSwizzleMode swMode = pIn->swizzleMode;
UINT_32 elementBytesLog2 = Log2(pIn->bpp >> 3);
UINT_32 numMipLevels = pIn->numMipLevels;
ADDR2_MIP_INFO* pMipInfo = pOut->pMipInfo;
UINT_32 index = ADDR_INVALID_EQUATION_INDEX;
BOOL_32 eqSupported = (pOut->firstMipInTail == FALSE) &&
IsEquationSupported(rsrcType, swMode, elementBytesLog2);
UINT_32 rsrcTypeIdx = static_cast<UINT_32>(rsrcType) - 1;
UINT_32 swModeIdx = static_cast<UINT_32>(swMode);
if (eqSupported)
{
index = m_equationLookupTable[rsrcTypeIdx][swModeIdx][elementBytesLog2];
if (pMipInfo != NULL)
{
pMipInfo->equationIndex = index;
pMipInfo->mipOffsetXBytes = 0;
pMipInfo->mipOffsetYPixel = 0;
pMipInfo->mipOffsetZPixel = 0;
pMipInfo->postSwizzleOffset = 0;
2017-03-14 22:32:25 +01:00
/*static const UINT_32 Prt_Xor_Gap =
static_cast<UINT_32>(ADDR_SW_64KB_Z_T) - static_cast<UINT_32>(ADDR_SW_64KB_Z);*/
2016-10-06 18:55:25 +02:00
for (UINT_32 i = 1; i < numMipLevels; i++)
{
Dim3d mipStartPos = {0};
UINT_32 mipTailOffset = 0;
mipStartPos = GetMipStartPos(rsrcType,
swMode,
pOut->pitch,
pOut->height,
pOut->numSlices,
pOut->blockWidth,
pOut->blockHeight,
pOut->blockSlices,
i,
&mipTailOffset);
UINT_32 mipSwModeIdx = swModeIdx;
pMipInfo[i].equationIndex =
m_equationLookupTable[rsrcTypeIdx][mipSwModeIdx][elementBytesLog2];
pMipInfo[i].mipOffsetXBytes = mipStartPos.w * pOut->blockWidth * (pOut->bpp >> 3);
pMipInfo[i].mipOffsetYPixel = mipStartPos.h * pOut->blockHeight;
pMipInfo[i].mipOffsetZPixel = mipStartPos.d * pOut->blockSlices;
pMipInfo[i].postSwizzleOffset = mipTailOffset;
}
}
}
else if (pMipInfo != NULL)
{
for (UINT_32 i = 0; i < numMipLevels; i++)
{
pMipInfo[i].equationIndex = ADDR_INVALID_EQUATION_INDEX;
pMipInfo[i].mipOffsetXBytes = 0;
pMipInfo[i].mipOffsetYPixel = 0;
pMipInfo[i].mipOffsetZPixel = 0;
pMipInfo[i].postSwizzleOffset = 0;
}
}
return index;
}
/**
****************************************************************************************************
* Gfx9Lib::HwlComputeBlock256Equation
*
* @brief
* Interface function stub of ComputeBlock256Equation
*
* @return
* ADDR_E_RETURNCODE
****************************************************************************************************
*/
ADDR_E_RETURNCODE Gfx9Lib::HwlComputeBlock256Equation(
AddrResourceType rsrcType,
AddrSwizzleMode swMode,
UINT_32 elementBytesLog2,
ADDR_EQUATION* pEquation) const
{
ADDR_E_RETURNCODE ret = ADDR_OK;
pEquation->numBits = 8;
UINT_32 i = 0;
for (; i < elementBytesLog2; i++)
{
InitChannel(1, 0 , i, &pEquation->addr[i]);
}
ADDR_CHANNEL_SETTING* pixelBit = &pEquation->addr[elementBytesLog2];
const UINT_32 MaxBitsUsed = 4;
ADDR_CHANNEL_SETTING x[MaxBitsUsed] = {};
ADDR_CHANNEL_SETTING y[MaxBitsUsed] = {};
for (i = 0; i < MaxBitsUsed; i++)
{
InitChannel(1, 0, elementBytesLog2 + i, &x[i]);
InitChannel(1, 1, i, &y[i]);
}
if (IsStandardSwizzle(rsrcType, swMode))
{
switch (elementBytesLog2)
{
case 0:
pixelBit[0] = x[0];
pixelBit[1] = x[1];
pixelBit[2] = x[2];
pixelBit[3] = x[3];
pixelBit[4] = y[0];
pixelBit[5] = y[1];
pixelBit[6] = y[2];
pixelBit[7] = y[3];
break;
case 1:
pixelBit[0] = x[0];
pixelBit[1] = x[1];
pixelBit[2] = x[2];
pixelBit[3] = y[0];
pixelBit[4] = y[1];
pixelBit[5] = y[2];
pixelBit[6] = x[3];
break;
case 2:
pixelBit[0] = x[0];
pixelBit[1] = x[1];
pixelBit[2] = y[0];
pixelBit[3] = y[1];
pixelBit[4] = y[2];
pixelBit[5] = x[2];
break;
case 3:
pixelBit[0] = x[0];
pixelBit[1] = y[0];
pixelBit[2] = y[1];
pixelBit[3] = x[1];
pixelBit[4] = x[2];
break;
case 4:
pixelBit[0] = y[0];
pixelBit[1] = y[1];
pixelBit[2] = x[0];
pixelBit[3] = x[1];
break;
default:
ADDR_ASSERT_ALWAYS();
ret = ADDR_INVALIDPARAMS;
break;
}
}
else if (IsDisplaySwizzle(rsrcType, swMode))
{
switch (elementBytesLog2)
{
case 0:
pixelBit[0] = x[0];
pixelBit[1] = x[1];
pixelBit[2] = x[2];
pixelBit[3] = y[1];
pixelBit[4] = y[0];
pixelBit[5] = y[2];
pixelBit[6] = x[3];
pixelBit[7] = y[3];
break;
case 1:
pixelBit[0] = x[0];
pixelBit[1] = x[1];
pixelBit[2] = x[2];
pixelBit[3] = y[0];
pixelBit[4] = y[1];
pixelBit[5] = y[2];
pixelBit[6] = x[3];
break;
case 2:
pixelBit[0] = x[0];
pixelBit[1] = x[1];
pixelBit[2] = y[0];
pixelBit[3] = x[2];
pixelBit[4] = y[1];
pixelBit[5] = y[2];
break;
case 3:
pixelBit[0] = x[0];
pixelBit[1] = y[0];
pixelBit[2] = x[1];
pixelBit[3] = x[2];
pixelBit[4] = y[1];
break;
case 4:
pixelBit[0] = x[0];
pixelBit[1] = y[0];
pixelBit[2] = x[1];
pixelBit[3] = y[1];
break;
default:
ADDR_ASSERT_ALWAYS();
ret = ADDR_INVALIDPARAMS;
break;
}
}
else if (IsRotateSwizzle(swMode))
{
switch (elementBytesLog2)
{
case 0:
pixelBit[0] = y[0];
pixelBit[1] = y[1];
pixelBit[2] = y[2];
pixelBit[3] = x[1];
pixelBit[4] = x[0];
pixelBit[5] = x[2];
pixelBit[6] = x[3];
pixelBit[7] = y[3];
break;
case 1:
pixelBit[0] = y[0];
pixelBit[1] = y[1];
pixelBit[2] = y[2];
pixelBit[3] = x[0];
pixelBit[4] = x[1];
pixelBit[5] = x[2];
pixelBit[6] = x[3];
break;
case 2:
pixelBit[0] = y[0];
pixelBit[1] = y[1];
pixelBit[2] = x[0];
pixelBit[3] = y[2];
pixelBit[4] = x[1];
pixelBit[5] = x[2];
break;
case 3:
pixelBit[0] = y[0];
pixelBit[1] = x[0];
pixelBit[2] = y[1];
pixelBit[3] = x[1];
pixelBit[4] = x[2];
break;
default:
ADDR_ASSERT_ALWAYS();
case 4:
ret = ADDR_INVALIDPARAMS;
break;
}
}
else
{
ADDR_ASSERT_ALWAYS();
ret = ADDR_INVALIDPARAMS;
}
// Post validation
if (ret == ADDR_OK)
{
2017-03-14 22:32:25 +01:00
//Dim2d microBlockDim = Block256b[elementBytesLog2];
2016-10-06 18:55:25 +02:00
ADDR_ASSERT((2u << GetMaxValidChannelIndex(pEquation->addr, 8, 0)) ==
(microBlockDim.w * (1 << elementBytesLog2)));
ADDR_ASSERT((2u << GetMaxValidChannelIndex(pEquation->addr, 8, 1)) == microBlockDim.h);
}
return ret;
}
/**
****************************************************************************************************
* Gfx9Lib::HwlComputeThinEquation
*
* @brief
* Interface function stub of ComputeThinEquation
*
* @return
* ADDR_E_RETURNCODE
****************************************************************************************************
*/
ADDR_E_RETURNCODE Gfx9Lib::HwlComputeThinEquation(
AddrResourceType rsrcType,
AddrSwizzleMode swMode,
UINT_32 elementBytesLog2,
ADDR_EQUATION* pEquation) const
{
ADDR_E_RETURNCODE ret = ADDR_OK;
UINT_32 blockSizeLog2 = GetBlockSizeLog2(swMode);
UINT_32 maxXorBits = blockSizeLog2;
if (IsNonPrtXor(swMode))
{
// For non-prt-xor, maybe need to initialize some more bits for xor
// The highest xor bit used in equation will be max the following 3 items:
// 1. m_pipeInterleaveLog2 + 2 * pipeXorBits
// 2. m_pipeInterleaveLog2 + pipeXorBits + 2 * bankXorBits
// 3. blockSizeLog2
maxXorBits = Max(maxXorBits, m_pipeInterleaveLog2 + 2 * GetPipeXorBits(blockSizeLog2));
maxXorBits = Max(maxXorBits, m_pipeInterleaveLog2 +
GetPipeXorBits(blockSizeLog2) +
2 * GetBankXorBits(blockSizeLog2));
}
const UINT_32 MaxBitsUsed = 14;
ADDR_ASSERT((2 * MaxBitsUsed) >= maxXorBits);
ADDR_CHANNEL_SETTING x[MaxBitsUsed] = {};
ADDR_CHANNEL_SETTING y[MaxBitsUsed] = {};
const UINT_32 ExtraXorBits = 16;
ADDR_ASSERT(ExtraXorBits >= maxXorBits - blockSizeLog2);
ADDR_CHANNEL_SETTING xorExtra[ExtraXorBits] = {};
for (UINT_32 i = 0; i < MaxBitsUsed; i++)
{
InitChannel(1, 0, elementBytesLog2 + i, &x[i]);
InitChannel(1, 1, i, &y[i]);
}
ADDR_CHANNEL_SETTING* pixelBit = pEquation->addr;
for (UINT_32 i = 0; i < elementBytesLog2; i++)
{
InitChannel(1, 0 , i, &pixelBit[i]);
}
UINT_32 xIdx = 0;
UINT_32 yIdx = 0;
UINT_32 lowBits = 0;
if (IsZOrderSwizzle(swMode))
{
if (elementBytesLog2 <= 3)
{
for (UINT_32 i = elementBytesLog2; i < 6; i++)
{
pixelBit[i] = (((i - elementBytesLog2) & 1) == 0) ? x[xIdx++] : y[yIdx++];
}
lowBits = 6;
}
else
{
ret = ADDR_INVALIDPARAMS;
}
}
else
{
ret = HwlComputeBlock256Equation(rsrcType, swMode, elementBytesLog2, pEquation);
if (ret == ADDR_OK)
{
Dim2d microBlockDim = Block256b[elementBytesLog2];
xIdx = Log2(microBlockDim.w);
yIdx = Log2(microBlockDim.h);
lowBits = 8;
}
}
if (ret == ADDR_OK)
{
for (UINT_32 i = lowBits; i < blockSizeLog2; i++)
{
pixelBit[i] = ((i & 1) == 0) ? y[yIdx++] : x[xIdx++];
}
for (UINT_32 i = blockSizeLog2; i < maxXorBits; i++)
{
xorExtra[i - blockSizeLog2] = ((i & 1) == 0) ? y[yIdx++] : x[xIdx++];
}
}
if ((ret == ADDR_OK) && IsXor(swMode))
{
// Fill XOR bits
UINT_32 pipeStart = m_pipeInterleaveLog2;
UINT_32 pipeXorBits = GetPipeXorBits(blockSizeLog2);
for (UINT_32 i = 0; i < pipeXorBits; i++)
{
UINT_32 xor1BitPos = pipeStart + 2 * pipeXorBits - 1 - i;
ADDR_CHANNEL_SETTING* pXor1Src =
(xor1BitPos < blockSizeLog2) ?
&pEquation->addr[xor1BitPos] : &xorExtra[xor1BitPos - blockSizeLog2];
InitChannel(&pEquation->xor1[pipeStart + i], pXor1Src);
}
UINT_32 bankStart = pipeStart + pipeXorBits;
UINT_32 bankXorBits = GetBankXorBits(blockSizeLog2);
for (UINT_32 i = 0; i < bankXorBits; i++)
{
UINT_32 xor1BitPos = bankStart + 2 * bankXorBits - 1 - i;
ADDR_CHANNEL_SETTING* pXor1Src =
(xor1BitPos < blockSizeLog2) ?
&pEquation->addr[xor1BitPos] : &xorExtra[xor1BitPos - blockSizeLog2];
InitChannel(&pEquation->xor1[pipeStart + i], pXor1Src);
}
pEquation->numBits = blockSizeLog2;
}
if ((ret == ADDR_OK) && IsTex3d(rsrcType))
{
pEquation->stackedDepthSlices = TRUE;
}
return ret;
}
/**
****************************************************************************************************
* Gfx9Lib::HwlComputeThickEquation
*
* @brief
* Interface function stub of ComputeThickEquation
*
* @return
* ADDR_E_RETURNCODE
****************************************************************************************************
*/
ADDR_E_RETURNCODE Gfx9Lib::HwlComputeThickEquation(
AddrResourceType rsrcType,
AddrSwizzleMode swMode,
UINT_32 elementBytesLog2,
ADDR_EQUATION* pEquation) const
{
ADDR_E_RETURNCODE ret = ADDR_OK;
ADDR_ASSERT(IsTex3d(rsrcType));
UINT_32 blockSizeLog2 = GetBlockSizeLog2(swMode);
UINT_32 maxXorBits = blockSizeLog2;
if (IsNonPrtXor(swMode))
{
// For non-prt-xor, maybe need to initialize some more bits for xor
// The highest xor bit used in equation will be max the following 3:
// 1. m_pipeInterleaveLog2 + 3 * pipeXorBits
// 2. m_pipeInterleaveLog2 + pipeXorBits + 3 * bankXorBits
// 3. blockSizeLog2
maxXorBits = Max(maxXorBits, m_pipeInterleaveLog2 + 3 * GetPipeXorBits(blockSizeLog2));
maxXorBits = Max(maxXorBits, m_pipeInterleaveLog2 +
GetPipeXorBits(blockSizeLog2) +
3 * GetBankXorBits(blockSizeLog2));
}
for (UINT_32 i = 0; i < elementBytesLog2; i++)
{
InitChannel(1, 0 , i, &pEquation->addr[i]);
}
ADDR_CHANNEL_SETTING* pixelBit = &pEquation->addr[elementBytesLog2];
const UINT_32 MaxBitsUsed = 12;
ADDR_ASSERT((3 * MaxBitsUsed) >= maxXorBits);
ADDR_CHANNEL_SETTING x[MaxBitsUsed] = {};
ADDR_CHANNEL_SETTING y[MaxBitsUsed] = {};
ADDR_CHANNEL_SETTING z[MaxBitsUsed] = {};
const UINT_32 ExtraXorBits = 24;
ADDR_ASSERT(ExtraXorBits >= maxXorBits - blockSizeLog2);
ADDR_CHANNEL_SETTING xorExtra[ExtraXorBits] = {};
for (UINT_32 i = 0; i < MaxBitsUsed; i++)
{
InitChannel(1, 0, elementBytesLog2 + i, &x[i]);
InitChannel(1, 1, i, &y[i]);
InitChannel(1, 2, i, &z[i]);
}
if (IsZOrderSwizzle(swMode))
{
switch (elementBytesLog2)
{
case 0:
pixelBit[0] = x[0];
pixelBit[1] = y[0];
pixelBit[2] = x[1];
pixelBit[3] = y[1];
pixelBit[4] = z[0];
pixelBit[5] = z[1];
pixelBit[6] = x[2];
pixelBit[7] = z[2];
pixelBit[8] = y[2];
pixelBit[9] = x[3];
break;
case 1:
pixelBit[0] = x[0];
pixelBit[1] = y[0];
pixelBit[2] = x[1];
pixelBit[3] = y[1];
pixelBit[4] = z[0];
pixelBit[5] = z[1];
pixelBit[6] = z[2];
pixelBit[7] = y[2];
pixelBit[8] = x[2];
break;
case 2:
pixelBit[0] = x[0];
pixelBit[1] = y[0];
pixelBit[2] = x[1];
pixelBit[3] = z[0];
pixelBit[4] = y[1];
pixelBit[5] = z[1];
pixelBit[6] = y[2];
pixelBit[7] = x[2];
break;
case 3:
pixelBit[0] = x[0];
pixelBit[1] = y[0];
pixelBit[2] = z[0];
pixelBit[3] = x[1];
pixelBit[4] = z[1];
pixelBit[5] = y[1];
pixelBit[6] = x[2];
break;
case 4:
pixelBit[0] = x[0];
pixelBit[1] = y[0];
pixelBit[2] = z[0];
pixelBit[3] = z[1];
pixelBit[4] = y[1];
pixelBit[5] = x[1];
break;
default:
ADDR_ASSERT_ALWAYS();
ret = ADDR_INVALIDPARAMS;
break;
}
}
else if (IsStandardSwizzle(rsrcType, swMode))
{
switch (elementBytesLog2)
{
case 0:
pixelBit[0] = x[0];
pixelBit[1] = x[1];
pixelBit[2] = x[2];
pixelBit[3] = x[3];
pixelBit[4] = y[0];
pixelBit[5] = y[1];
pixelBit[6] = z[0];
pixelBit[7] = z[1];
pixelBit[8] = z[2];
pixelBit[9] = y[2];
break;
case 1:
pixelBit[0] = x[0];
pixelBit[1] = x[1];
pixelBit[2] = x[2];
pixelBit[3] = y[0];
pixelBit[4] = y[1];
pixelBit[5] = z[0];
pixelBit[6] = z[1];
pixelBit[7] = z[2];
pixelBit[8] = y[2];
break;
case 2:
pixelBit[0] = x[0];
pixelBit[1] = x[1];
pixelBit[2] = y[0];
pixelBit[3] = y[1];
pixelBit[4] = z[0];
pixelBit[5] = z[1];
pixelBit[6] = y[2];
pixelBit[7] = x[2];
break;
case 3:
pixelBit[0] = x[0];
pixelBit[1] = y[0];
pixelBit[2] = y[1];
pixelBit[3] = z[0];
pixelBit[4] = z[1];
pixelBit[5] = x[1];
pixelBit[6] = x[2];
break;
case 4:
pixelBit[0] = y[0];
pixelBit[1] = y[1];
pixelBit[2] = z[0];
pixelBit[3] = z[1];
pixelBit[4] = x[0];
pixelBit[5] = x[1];
break;
default:
ADDR_ASSERT_ALWAYS();
ret = ADDR_INVALIDPARAMS;
break;
}
}
else
{
ADDR_ASSERT_ALWAYS();
ret = ADDR_INVALIDPARAMS;
}
if (ret == ADDR_OK)
{
Dim3d microBlockDim = Block1kb[elementBytesLog2];
UINT_32 xIdx = Log2(microBlockDim.w);
UINT_32 yIdx = Log2(microBlockDim.h);
UINT_32 zIdx = Log2(microBlockDim.d);
pixelBit = pEquation->addr;
static const UINT_32 lowBits = 10;
ADDR_ASSERT(pEquation->addr[lowBits - 1].valid == 1);
ADDR_ASSERT(pEquation->addr[lowBits].valid == 0);
for (UINT_32 i = lowBits; i < blockSizeLog2; i++)
{
if (((i - lowBits) % 3) == 0)
{
pixelBit[i] = x[xIdx++];
}
else if (((i - lowBits) % 3) == 1)
{
pixelBit[i] = z[zIdx++];
}
else
{
pixelBit[i] = y[yIdx++];
}
}
for (UINT_32 i = blockSizeLog2; i < maxXorBits; i++)
{
if (((i - lowBits) % 3) == 0)
{
xorExtra[i - blockSizeLog2] = x[xIdx++];
}
else if (((i - lowBits) % 3) == 1)
{
xorExtra[i - blockSizeLog2] = z[zIdx++];
}
else
{
xorExtra[i - blockSizeLog2] = y[yIdx++];
}
}
}
if ((ret == ADDR_OK) && IsXor(swMode))
{
// Fill XOR bits
UINT_32 pipeStart = m_pipeInterleaveLog2;
UINT_32 pipeXorBits = GetPipeXorBits(blockSizeLog2);
for (UINT_32 i = 0; i < pipeXorBits; i++)
{
UINT_32 xor1BitPos = pipeStart + (3 * pipeXorBits) - 1 - (2 * i);
ADDR_CHANNEL_SETTING* pXor1Src =
(xor1BitPos < blockSizeLog2) ?
&pEquation->addr[xor1BitPos] : &xorExtra[xor1BitPos - blockSizeLog2];
InitChannel(&pEquation->xor1[pipeStart + i], pXor1Src);
UINT_32 xor2BitPos = pipeStart + (3 * pipeXorBits) - 2 - (2 * i);
ADDR_CHANNEL_SETTING* pXor2Src =
(xor2BitPos < blockSizeLog2) ?
&pEquation->addr[xor2BitPos] : &xorExtra[xor2BitPos - blockSizeLog2];
InitChannel(&pEquation->xor2[pipeStart + i], pXor2Src);
}
UINT_32 bankStart = pipeStart + pipeXorBits;
UINT_32 bankXorBits = GetBankXorBits(blockSizeLog2);
for (UINT_32 i = 0; i < bankXorBits; i++)
{
UINT_32 xor1BitPos = bankStart + (3 * bankXorBits) - 1 - (2 * i);
ADDR_CHANNEL_SETTING* pXor1Src =
(xor1BitPos < blockSizeLog2) ?
&pEquation->addr[xor1BitPos] : &xorExtra[xor1BitPos - blockSizeLog2];
InitChannel(&pEquation->xor1[bankStart + i], pXor1Src);
UINT_32 xor2BitPos = bankStart + (3 * bankXorBits) - 2 - (2 * i);
ADDR_CHANNEL_SETTING* pXor2Src =
(xor2BitPos < blockSizeLog2) ?
&pEquation->addr[xor2BitPos] : &xorExtra[xor2BitPos - blockSizeLog2];
InitChannel(&pEquation->xor2[bankStart + i], pXor2Src);
}
pEquation->numBits = blockSizeLog2;
}
return ret;
}
/**
****************************************************************************************************
* Gfx9Lib::HwlIsValidDisplaySwizzleMode
*
* @brief
* Check if a swizzle mode is supported by display engine
*
* @return
* TRUE is swizzle mode is supported by display engine
****************************************************************************************************
*/
BOOL_32 Gfx9Lib::HwlIsValidDisplaySwizzleMode(const ADDR2_COMPUTE_SURFACE_INFO_INPUT* pIn) const
{
BOOL_32 support = FALSE;
2017-03-14 22:32:25 +01:00
//const AddrResourceType resourceType = pIn->resourceType;
2016-10-06 18:55:25 +02:00
const AddrSwizzleMode swizzleMode = pIn->swizzleMode;
if (m_settings.isDce12)
{
switch (swizzleMode)
{
case ADDR_SW_256B_D:
case ADDR_SW_256B_R:
support = (pIn->bpp == 32);
break;
case ADDR_SW_LINEAR:
case ADDR_SW_4KB_D:
case ADDR_SW_4KB_R:
case ADDR_SW_64KB_D:
case ADDR_SW_64KB_R:
case ADDR_SW_VAR_D:
case ADDR_SW_VAR_R:
case ADDR_SW_4KB_D_X:
case ADDR_SW_4KB_R_X:
case ADDR_SW_64KB_D_X:
case ADDR_SW_64KB_R_X:
case ADDR_SW_VAR_D_X:
case ADDR_SW_VAR_R_X:
support = (pIn->bpp <= 64);
break;
default:
break;
}
}
else
{
ADDR_NOT_IMPLEMENTED();
}
return support;
}
} // V2
} // Addr