mesa/src/compiler/glsl/shader_cache.cpp

706 lines
24 KiB
C++
Raw Normal View History

/*
* Copyright © 2014 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
/**
* \file shader_cache.cpp
*
* GLSL shader cache implementation
*
* This uses disk_cache.c to write out a serialization of various
* state that's required in order to successfully load and use a
* binary written out by a drivers backend, this state is referred to as
* "metadata" throughout the implementation.
*
* The hash key for glsl metadata is a hash of the hashes of each GLSL
* source string as well as some API settings that change the final program
* such as SSO, attribute bindings, frag data bindings, etc.
*
* In order to avoid caching any actual IR we use the put_key/get_key support
* in the disk_cache to put the SHA-1 hash for each successfully compiled
* shader into the cache, and optimisticly return early from glCompileShader
* (if the identical shader had been successfully compiled in the past),
* in the hope that the final linked shader will be found in the cache.
* If anything goes wrong (shader variant not found, backend cache item is
* corrupt, etc) we will use a fallback path to compile and link the IR.
*/
#include "blob.h"
#include "compiler/shader_info.h"
#include "glsl_symbol_table.h"
#include "glsl_parser_extras.h"
#include "ir.h"
#include "ir_optimization.h"
#include "ir_rvalue_visitor.h"
#include "ir_uniform.h"
#include "linker.h"
#include "link_varyings.h"
#include "main/core.h"
#include "nir.h"
#include "program.h"
#include "shader_cache.h"
#include "util/mesa-sha1.h"
#include "util/string_to_uint_map.h"
extern "C" {
#include "main/enums.h"
#include "main/shaderobj.h"
#include "program/program.h"
}
static void
compile_shaders(struct gl_context *ctx, struct gl_shader_program *prog) {
for (unsigned i = 0; i < prog->NumShaders; i++) {
_mesa_glsl_compile_shader(ctx, prog->Shaders[i], false, false, true);
}
}
static void
encode_type_to_blob(struct blob *blob, const glsl_type *type)
{
uint32_t encoding;
switch (type->base_type) {
case GLSL_TYPE_UINT:
case GLSL_TYPE_INT:
case GLSL_TYPE_FLOAT:
case GLSL_TYPE_BOOL:
case GLSL_TYPE_DOUBLE:
case GLSL_TYPE_UINT64:
case GLSL_TYPE_INT64:
encoding = (type->base_type << 24) |
(type->vector_elements << 4) |
(type->matrix_columns);
break;
case GLSL_TYPE_SAMPLER:
encoding = (type->base_type) << 24 |
(type->sampler_dimensionality << 4) |
(type->sampler_shadow << 3) |
(type->sampler_array << 2) |
(type->sampled_type);
break;
case GLSL_TYPE_SUBROUTINE:
encoding = type->base_type << 24;
blob_write_uint32(blob, encoding);
blob_write_string(blob, type->name);
return;
case GLSL_TYPE_IMAGE:
encoding = (type->base_type) << 24 |
(type->sampler_dimensionality << 3) |
(type->sampler_array << 2) |
(type->sampled_type);
break;
case GLSL_TYPE_ATOMIC_UINT:
encoding = (type->base_type << 24);
break;
case GLSL_TYPE_ARRAY:
blob_write_uint32(blob, (type->base_type) << 24);
blob_write_uint32(blob, type->length);
encode_type_to_blob(blob, type->fields.array);
return;
case GLSL_TYPE_STRUCT:
case GLSL_TYPE_INTERFACE:
blob_write_uint32(blob, (type->base_type) << 24);
blob_write_string(blob, type->name);
blob_write_uint32(blob, type->length);
blob_write_bytes(blob, type->fields.structure,
sizeof(glsl_struct_field) * type->length);
for (unsigned i = 0; i < type->length; i++) {
encode_type_to_blob(blob, type->fields.structure[i].type);
blob_write_string(blob, type->fields.structure[i].name);
}
if (type->base_type == GLSL_TYPE_INTERFACE) {
blob_write_uint32(blob, type->interface_packing);
blob_write_uint32(blob, type->interface_row_major);
}
return;
case GLSL_TYPE_VOID:
case GLSL_TYPE_ERROR:
default:
assert(!"Cannot encode type!");
encoding = 0;
break;
}
blob_write_uint32(blob, encoding);
}
static const glsl_type *
decode_type_from_blob(struct blob_reader *blob)
{
uint32_t u = blob_read_uint32(blob);
glsl_base_type base_type = (glsl_base_type) (u >> 24);
switch (base_type) {
case GLSL_TYPE_UINT:
case GLSL_TYPE_INT:
case GLSL_TYPE_FLOAT:
case GLSL_TYPE_BOOL:
case GLSL_TYPE_DOUBLE:
case GLSL_TYPE_UINT64:
case GLSL_TYPE_INT64:
return glsl_type::get_instance(base_type, (u >> 4) & 0x0f, u & 0x0f);
case GLSL_TYPE_SAMPLER:
return glsl_type::get_sampler_instance((enum glsl_sampler_dim) ((u >> 4) & 0x07),
(u >> 3) & 0x01,
(u >> 2) & 0x01,
(glsl_base_type) ((u >> 0) & 0x03));
case GLSL_TYPE_SUBROUTINE:
return glsl_type::get_subroutine_instance(blob_read_string(blob));
case GLSL_TYPE_IMAGE:
return glsl_type::get_image_instance((enum glsl_sampler_dim) ((u >> 3) & 0x07),
(u >> 2) & 0x01,
(glsl_base_type) ((u >> 0) & 0x03));
case GLSL_TYPE_ATOMIC_UINT:
return glsl_type::atomic_uint_type;
case GLSL_TYPE_ARRAY: {
unsigned length = blob_read_uint32(blob);
return glsl_type::get_array_instance(decode_type_from_blob(blob),
length);
}
case GLSL_TYPE_STRUCT:
case GLSL_TYPE_INTERFACE: {
char *name = blob_read_string(blob);
unsigned num_fields = blob_read_uint32(blob);
glsl_struct_field *fields = (glsl_struct_field *)
blob_read_bytes(blob, sizeof(glsl_struct_field) * num_fields);
for (unsigned i = 0; i < num_fields; i++) {
fields[i].type = decode_type_from_blob(blob);
fields[i].name = blob_read_string(blob);
}
if (base_type == GLSL_TYPE_INTERFACE) {
enum glsl_interface_packing packing =
(glsl_interface_packing) blob_read_uint32(blob);
bool row_major = blob_read_uint32(blob);
return glsl_type::get_interface_instance(fields, num_fields,
packing, row_major, name);
} else {
return glsl_type::get_record_instance(fields, num_fields, name);
}
}
case GLSL_TYPE_VOID:
case GLSL_TYPE_ERROR:
default:
assert(!"Cannot decode type!");
return NULL;
}
}
static void
write_uniforms(struct blob *metadata, struct gl_shader_program *prog)
{
blob_write_uint32(metadata, prog->SamplersValidated);
blob_write_uint32(metadata, prog->data->NumUniformStorage);
blob_write_uint32(metadata, prog->data->NumUniformDataSlots);
for (unsigned i = 0; i < prog->data->NumUniformStorage; i++) {
encode_type_to_blob(metadata, prog->data->UniformStorage[i].type);
blob_write_uint32(metadata, prog->data->UniformStorage[i].array_elements);
blob_write_string(metadata, prog->data->UniformStorage[i].name);
blob_write_uint32(metadata, prog->data->UniformStorage[i].storage -
prog->data->UniformDataSlots);
blob_write_uint32(metadata, prog->data->UniformStorage[i].remap_location);
blob_write_uint32(metadata, prog->data->UniformStorage[i].block_index);
blob_write_uint32(metadata, prog->data->UniformStorage[i].atomic_buffer_index);
blob_write_uint32(metadata, prog->data->UniformStorage[i].offset);
blob_write_uint32(metadata, prog->data->UniformStorage[i].array_stride);
blob_write_uint32(metadata, prog->data->UniformStorage[i].matrix_stride);
blob_write_uint32(metadata, prog->data->UniformStorage[i].row_major);
blob_write_uint32(metadata,
prog->data->UniformStorage[i].num_compatible_subroutines);
blob_write_uint32(metadata,
prog->data->UniformStorage[i].top_level_array_size);
blob_write_uint32(metadata,
prog->data->UniformStorage[i].top_level_array_stride);
}
}
static void
read_uniforms(struct blob_reader *metadata, struct gl_shader_program *prog)
{
struct gl_uniform_storage *uniforms;
union gl_constant_value *data;
prog->SamplersValidated = blob_read_uint32(metadata);
prog->data->NumUniformStorage = blob_read_uint32(metadata);
prog->data->NumUniformDataSlots = blob_read_uint32(metadata);
uniforms = rzalloc_array(prog, struct gl_uniform_storage,
prog->data->NumUniformStorage);
prog->data->UniformStorage = uniforms;
data = rzalloc_array(uniforms, union gl_constant_value,
prog->data->NumUniformDataSlots);
prog->data->UniformDataSlots = data;
prog->UniformHash = new string_to_uint_map;
for (unsigned i = 0; i < prog->data->NumUniformStorage; i++) {
uniforms[i].type = decode_type_from_blob(metadata);
uniforms[i].array_elements = blob_read_uint32(metadata);
uniforms[i].name = ralloc_strdup(prog, blob_read_string (metadata));
uniforms[i].storage = data + blob_read_uint32(metadata);
uniforms[i].remap_location = blob_read_uint32(metadata);
uniforms[i].block_index = blob_read_uint32(metadata);
uniforms[i].atomic_buffer_index = blob_read_uint32(metadata);
uniforms[i].offset = blob_read_uint32(metadata);
uniforms[i].array_stride = blob_read_uint32(metadata);
uniforms[i].matrix_stride = blob_read_uint32(metadata);
uniforms[i].row_major = blob_read_uint32(metadata);
uniforms[i].num_compatible_subroutines = blob_read_uint32(metadata);
uniforms[i].top_level_array_size = blob_read_uint32(metadata);
uniforms[i].top_level_array_stride = blob_read_uint32(metadata);
prog->UniformHash->put(i, uniforms[i].name);
}
}
enum uniform_remap_type
{
remap_type_inactive_explicit_location,
remap_type_null_ptr,
remap_type_uniform_offset
};
static void
write_uniform_remap_table_entry(struct blob *metadata,
gl_uniform_storage *uniform_storage,
gl_uniform_storage *entry)
{
if (entry == INACTIVE_UNIFORM_EXPLICIT_LOCATION) {
blob_write_uint32(metadata, remap_type_inactive_explicit_location);
} else if (entry == NULL) {
blob_write_uint32(metadata, remap_type_null_ptr);
} else {
blob_write_uint32(metadata, remap_type_uniform_offset);
uint32_t offset = entry - uniform_storage;
blob_write_uint32(metadata, offset);
}
}
static void
write_uniform_remap_table(struct blob *metadata,
struct gl_shader_program *prog)
{
blob_write_uint32(metadata, prog->NumUniformRemapTable);
for (unsigned i = 0; i < prog->NumUniformRemapTable; i++) {
write_uniform_remap_table_entry(metadata, prog->data->UniformStorage,
prog->UniformRemapTable[i]);
}
}
static void
read_uniform_remap_table_entry(struct blob_reader *metadata,
gl_uniform_storage *uniform_storage,
gl_uniform_storage **entry,
enum uniform_remap_type type)
{
if (type == remap_type_inactive_explicit_location) {
*entry = INACTIVE_UNIFORM_EXPLICIT_LOCATION;
} else if (type == remap_type_null_ptr) {
*entry = NULL;
} else {
uint32_t uni_offset = blob_read_uint32(metadata);
*entry = uniform_storage + uni_offset;
}
}
static void
read_uniform_remap_table(struct blob_reader *metadata,
struct gl_shader_program *prog)
{
prog->NumUniformRemapTable = blob_read_uint32(metadata);
prog->UniformRemapTable = rzalloc_array(prog, struct gl_uniform_storage *,
prog->NumUniformRemapTable);
for (unsigned i = 0; i < prog->NumUniformRemapTable; i++) {
enum uniform_remap_type type =
(enum uniform_remap_type) blob_read_uint32(metadata);
read_uniform_remap_table_entry(metadata, prog->data->UniformStorage,
&prog->UniformRemapTable[i], type);
}
}
struct whte_closure
{
struct blob *blob;
size_t num_entries;
};
static void
write_hash_table_entry(const char *key, unsigned value, void *closure)
{
struct whte_closure *whte = (struct whte_closure *) closure;
blob_write_string(whte->blob, key);
blob_write_uint32(whte->blob, value);
whte->num_entries++;
}
static void
write_hash_table(struct blob *metadata, struct string_to_uint_map *hash)
{
size_t offset;
struct whte_closure whte;
whte.blob = metadata;
whte.num_entries = 0;
offset = metadata->size;
/* Write a placeholder for the hashtable size. */
blob_write_uint32 (metadata, 0);
hash->iterate(write_hash_table_entry, &whte);
/* Overwrite with the computed number of entries written. */
blob_overwrite_uint32 (metadata, offset, whte.num_entries);
}
static void
read_hash_table(struct blob_reader *metadata, struct string_to_uint_map *hash)
{
size_t i, num_entries;
const char *key;
uint32_t value;
num_entries = blob_read_uint32 (metadata);
for (i = 0; i < num_entries; i++) {
key = blob_read_string(metadata);
value = blob_read_uint32(metadata);
hash->put(value, key);
}
}
static void
write_hash_tables(struct blob *metadata, struct gl_shader_program *prog)
{
write_hash_table(metadata, prog->AttributeBindings);
write_hash_table(metadata, prog->FragDataBindings);
write_hash_table(metadata, prog->FragDataIndexBindings);
}
static void
read_hash_tables(struct blob_reader *metadata, struct gl_shader_program *prog)
{
read_hash_table(metadata, prog->AttributeBindings);
read_hash_table(metadata, prog->FragDataBindings);
read_hash_table(metadata, prog->FragDataIndexBindings);
}
static void
write_shader_parameters(struct blob *metadata,
struct gl_program_parameter_list *params)
{
blob_write_uint32(metadata, params->NumParameters);
uint32_t i = 0;
while (i < params->NumParameters) {
struct gl_program_parameter *param = &params->Parameters[i];
blob_write_uint32(metadata, param->Type);
blob_write_string(metadata, param->Name);
blob_write_uint32(metadata, param->Size);
blob_write_uint32(metadata, param->DataType);
blob_write_bytes(metadata, param->StateIndexes,
sizeof(param->StateIndexes));
i += (param->Size + 3) / 4;
}
blob_write_bytes(metadata, params->ParameterValues,
sizeof(gl_constant_value) * 4 * params->NumParameters);
blob_write_uint32(metadata, params->StateFlags);
}
static void
read_shader_parameters(struct blob_reader *metadata,
struct gl_program_parameter_list *params)
{
gl_state_index state_indexes[STATE_LENGTH];
uint32_t i = 0;
uint32_t num_parameters = blob_read_uint32(metadata);
while (i < num_parameters) {
gl_register_file type = (gl_register_file) blob_read_uint32(metadata);
const char *name = blob_read_string(metadata);
unsigned size = blob_read_uint32(metadata);
unsigned data_type = blob_read_uint32(metadata);
blob_copy_bytes(metadata, (uint8_t *) state_indexes,
sizeof(state_indexes));
_mesa_add_parameter(params, type, name, size, data_type,
NULL, state_indexes);
i += (size + 3) / 4;
}
blob_copy_bytes(metadata, (uint8_t *) params->ParameterValues,
sizeof(gl_constant_value) * 4 * params->NumParameters);
params->StateFlags = blob_read_uint32(metadata);
}
static void
write_shader_metadata(struct blob *metadata, gl_linked_shader *shader)
{
assert(shader->Program);
struct gl_program *glprog = shader->Program;
blob_write_bytes(metadata, glprog->TexturesUsed,
sizeof(glprog->TexturesUsed));
blob_write_uint64(metadata, glprog->SamplersUsed);
write_shader_parameters(metadata, glprog->Parameters);
}
static void
read_shader_metadata(struct blob_reader *metadata,
struct gl_program *glprog,
gl_linked_shader *linked)
{
blob_copy_bytes(metadata, (uint8_t *) glprog->TexturesUsed,
sizeof(glprog->TexturesUsed));
glprog->SamplersUsed = blob_read_uint64(metadata);
glprog->Parameters = _mesa_new_parameter_list();
read_shader_parameters(metadata, glprog->Parameters);
}
static void
create_binding_str(const char *key, unsigned value, void *closure)
{
char **bindings_str = (char **) closure;
ralloc_asprintf_append(bindings_str, "%s:%u,", key, value);
}
static void
create_linked_shader_and_program(struct gl_context *ctx,
gl_shader_stage stage,
struct gl_shader_program *prog,
struct blob_reader *metadata)
{
struct gl_program *glprog;
struct gl_linked_shader *linked = rzalloc(NULL, struct gl_linked_shader);
linked->Stage = stage;
glprog = ctx->Driver.NewProgram(ctx, _mesa_shader_stage_to_program(stage),
prog->Name, false);
glprog->info.stage = stage;
linked->Program = glprog;
read_shader_metadata(metadata, glprog, linked);
/* Restore shader info */
blob_copy_bytes(metadata, (uint8_t *) &glprog->info, sizeof(shader_info));
if (glprog->info.name)
glprog->info.name = ralloc_strdup(glprog, blob_read_string(metadata));
if (glprog->info.label)
glprog->info.label = ralloc_strdup(glprog, blob_read_string(metadata));
_mesa_reference_shader_program_data(ctx, &glprog->sh.data, prog->data);
_mesa_reference_program(ctx, &linked->Program, glprog);
prog->_LinkedShaders[stage] = linked;
}
void
shader_cache_write_program_metadata(struct gl_context *ctx,
struct gl_shader_program *prog)
{
struct disk_cache *cache = ctx->Cache;
if (!cache)
return;
/* Exit early when we are dealing with a ff shader with no source file to
* generate a source from.
*
* TODO: In future we should use another method to generate a key for ff
* programs.
*/
if (*prog->data->sha1 == 0)
return;
struct blob *metadata = blob_create(NULL);
write_uniforms(metadata, prog);
write_hash_tables(metadata, prog);
blob_write_uint32(metadata, prog->data->Version);
blob_write_uint32(metadata, prog->data->linked_stages);
for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
struct gl_linked_shader *sh = prog->_LinkedShaders[i];
if (sh) {
write_shader_metadata(metadata, sh);
/* Store nir shader info */
blob_write_bytes(metadata, &sh->Program->info, sizeof(shader_info));
if (sh->Program->info.name)
blob_write_string(metadata, sh->Program->info.name);
if (sh->Program->info.label)
blob_write_string(metadata, sh->Program->info.label);
}
}
write_uniform_remap_table(metadata, prog);
char sha1_buf[41];
for (unsigned i = 0; i < prog->NumShaders; i++) {
disk_cache_put_key(cache, prog->Shaders[i]->sha1);
if (ctx->_Shader->Flags & GLSL_CACHE_INFO) {
fprintf(stderr, "marking shader: %s\n",
_mesa_sha1_format(sha1_buf, prog->Shaders[i]->sha1));
}
}
disk_cache_put(cache, prog->data->sha1, metadata->data, metadata->size);
ralloc_free(metadata);
if (ctx->_Shader->Flags & GLSL_CACHE_INFO) {
fprintf(stderr, "putting program metadata in cache: %s\n",
_mesa_sha1_format(sha1_buf, prog->data->sha1));
}
}
bool
shader_cache_read_program_metadata(struct gl_context *ctx,
struct gl_shader_program *prog)
{
/* Fixed function programs generated by Mesa are not cached. So don't
* try to read metadata for them from the cache.
*/
if (prog->Name == 0)
return false;
struct disk_cache *cache = ctx->Cache;
if (!cache)
return false;
/* Include bindings when creating sha1. These bindings change the resulting
* binary so they are just as important as the shader source.
*/
char *buf = ralloc_strdup(NULL, "vb: ");
prog->AttributeBindings->iterate(create_binding_str, &buf);
ralloc_strcat(&buf, "fb: ");
prog->FragDataBindings->iterate(create_binding_str, &buf);
ralloc_strcat(&buf, "fbi: ");
prog->FragDataIndexBindings->iterate(create_binding_str, &buf);
/* SSO has an effect on the linked program so include this when generating
* the sha also.
*/
ralloc_asprintf_append(&buf, "sso: %s\n",
prog->SeparateShader ? "T" : "F");
char sha1buf[41];
for (unsigned i = 0; i < prog->NumShaders; i++) {
struct gl_shader *sh = prog->Shaders[i];
ralloc_asprintf_append(&buf, "%s: %s\n",
_mesa_shader_stage_to_abbrev(sh->Stage),
_mesa_sha1_format(sha1buf, sh->sha1));
}
_mesa_sha1_compute(buf, strlen(buf), prog->data->sha1);
ralloc_free(buf);
size_t size;
uint8_t *buffer = (uint8_t *) disk_cache_get(cache, prog->data->sha1,
&size);
if (buffer == NULL) {
/* Cached program not found. We may have seen the individual shaders
* before and skipped compiling but they may not have been used together
* in this combination before. Fall back to linking shaders but first
* re-compile the shaders.
*
* We could probably only compile the shaders which were skipped here
* but we need to be careful because the source may also have been
* changed since the last compile so for now we just recompile
* everything.
*/
compile_shaders(ctx, prog);
return false;
}
if (ctx->_Shader->Flags & GLSL_CACHE_INFO) {
fprintf(stderr, "loading shader program meta data from cache: %s\n",
_mesa_sha1_format(sha1buf, prog->data->sha1));
}
struct blob_reader metadata;
blob_reader_init(&metadata, buffer, size);
assert(prog->data->UniformStorage == NULL);
read_uniforms(&metadata, prog);
read_hash_tables(&metadata, prog);
prog->data->Version = blob_read_uint32(&metadata);
prog->data->linked_stages = blob_read_uint32(&metadata);
unsigned mask = prog->data->linked_stages;
while (mask) {
const int j = u_bit_scan(&mask);
create_linked_shader_and_program(ctx, (gl_shader_stage) j, prog,
&metadata);
}
read_uniform_remap_table(&metadata, prog);
if (metadata.current != metadata.end || metadata.overrun) {
/* Something has gone wrong discard the item from the cache and rebuild
* from source.
*/
assert(!"Invalid GLSL shader disk cache item!");
if (ctx->_Shader->Flags & GLSL_CACHE_INFO) {
fprintf(stderr, "Error reading program from cache (invalid GLSL "
"cache item)\n");
}
disk_cache_remove(cache, prog->data->sha1);
compile_shaders(ctx, prog);
free(buffer);
return false;
}
/* This is used to flag a shader retrieved from cache */
prog->data->LinkStatus = linking_skipped;
free (buffer);
return true;
}