mesa/src/compiler/nir/nir_lower_flrp.c

356 lines
12 KiB
C
Raw Normal View History

/*
* Copyright © 2018 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include <math.h>
#include "nir.h"
#include "nir_builder.h"
#include "util/u_vector.h"
/**
* Lower flrp instructions.
*
* Unlike the lowerings that are possible in nir_opt_algrbraic, this pass can
* examine more global information to determine a possibly more efficient
* lowering for each flrp.
*/
static void
append_flrp_to_dead_list(struct u_vector *dead_flrp, struct nir_alu_instr *alu)
{
struct nir_alu_instr **tail = u_vector_add(dead_flrp);
*tail = alu;
}
/**
* Replace flrp(a, b, c) with ffma(b, c, ffma(-a, c, a)).
*/
static void
replace_with_strict_ffma(struct nir_builder *bld, struct u_vector *dead_flrp,
struct nir_alu_instr *alu)
{
nir_ssa_def *const a = nir_ssa_for_alu_src(bld, alu, 0);
nir_ssa_def *const b = nir_ssa_for_alu_src(bld, alu, 1);
nir_ssa_def *const c = nir_ssa_for_alu_src(bld, alu, 2);
nir_ssa_def *const neg_a = nir_fneg(bld, a);
nir_instr_as_alu(neg_a->parent_instr)->exact = alu->exact;
nir_ssa_def *const inner_ffma = nir_ffma(bld, neg_a, c, a);
nir_instr_as_alu(inner_ffma->parent_instr)->exact = alu->exact;
nir_ssa_def *const outer_ffma = nir_ffma(bld, b, c, inner_ffma);
nir_instr_as_alu(outer_ffma->parent_instr)->exact = alu->exact;
nir_ssa_def_rewrite_uses(&alu->dest.dest.ssa, nir_src_for_ssa(outer_ffma));
/* DO NOT REMOVE the original flrp yet. Many of the lowering choices are
* based on other uses of the sources. Removing the flrp may cause the
* last flrp in a sequence to make a different, incorrect choice.
*/
append_flrp_to_dead_list(dead_flrp, alu);
}
/**
* Replace flrp(a, b, c) with a(1-c) + bc.
*/
static void
replace_with_strict(struct nir_builder *bld, struct u_vector *dead_flrp,
struct nir_alu_instr *alu)
{
nir_ssa_def *const a = nir_ssa_for_alu_src(bld, alu, 0);
nir_ssa_def *const b = nir_ssa_for_alu_src(bld, alu, 1);
nir_ssa_def *const c = nir_ssa_for_alu_src(bld, alu, 2);
nir_ssa_def *const neg_c = nir_fneg(bld, c);
nir_instr_as_alu(neg_c->parent_instr)->exact = alu->exact;
nir_ssa_def *const one_minus_c =
nir_fadd(bld, nir_imm_float(bld, 1.0f), neg_c);
nir_instr_as_alu(one_minus_c->parent_instr)->exact = alu->exact;
nir_ssa_def *const first_product = nir_fmul(bld, a, one_minus_c);
nir_instr_as_alu(first_product->parent_instr)->exact = alu->exact;
nir_ssa_def *const second_product = nir_fmul(bld, b, c);
nir_instr_as_alu(second_product->parent_instr)->exact = alu->exact;
nir_ssa_def *const sum = nir_fadd(bld, first_product, second_product);
nir_instr_as_alu(sum->parent_instr)->exact = alu->exact;
nir_ssa_def_rewrite_uses(&alu->dest.dest.ssa, nir_src_for_ssa(sum));
/* DO NOT REMOVE the original flrp yet. Many of the lowering choices are
* based on other uses of the sources. Removing the flrp may cause the
* last flrp in a sequence to make a different, incorrect choice.
*/
append_flrp_to_dead_list(dead_flrp, alu);
}
/**
* Replace flrp(a, b, c) with a + c(b-a).
*/
static void
replace_with_fast(struct nir_builder *bld, struct u_vector *dead_flrp,
struct nir_alu_instr *alu)
{
nir_ssa_def *const a = nir_ssa_for_alu_src(bld, alu, 0);
nir_ssa_def *const b = nir_ssa_for_alu_src(bld, alu, 1);
nir_ssa_def *const c = nir_ssa_for_alu_src(bld, alu, 2);
nir_ssa_def *const neg_a = nir_fneg(bld, a);
nir_instr_as_alu(neg_a->parent_instr)->exact = alu->exact;
nir_ssa_def *const b_minus_a = nir_fadd(bld, b, neg_a);
nir_instr_as_alu(b_minus_a->parent_instr)->exact = alu->exact;
nir_ssa_def *const product = nir_fmul(bld, c, b_minus_a);
nir_instr_as_alu(product->parent_instr)->exact = alu->exact;
nir_ssa_def *const sum = nir_fadd(bld, a, product);
nir_instr_as_alu(sum->parent_instr)->exact = alu->exact;
nir_ssa_def_rewrite_uses(&alu->dest.dest.ssa, nir_src_for_ssa(sum));
/* DO NOT REMOVE the original flrp yet. Many of the lowering choices are
* based on other uses of the sources. Removing the flrp may cause the
* last flrp in a sequence to make a different, incorrect choice.
*/
append_flrp_to_dead_list(dead_flrp, alu);
}
static bool
sources_are_constants_with_similar_magnitudes(const nir_alu_instr *instr)
{
nir_const_value *val0 = nir_src_as_const_value(instr->src[0].src);
nir_const_value *val1 = nir_src_as_const_value(instr->src[1].src);
if (val0 == NULL || val1 == NULL)
return false;
const uint8_t *const swizzle0 = instr->src[0].swizzle;
const uint8_t *const swizzle1 = instr->src[1].swizzle;
const unsigned num_components = nir_dest_num_components(instr->dest.dest);
if (instr->dest.dest.ssa.bit_size == 32) {
for (unsigned i = 0; i < num_components; i++) {
int exp0;
int exp1;
frexpf(val0[swizzle0[i]].f32, &exp0);
frexpf(val1[swizzle1[i]].f32, &exp1);
/* If the difference between exponents is >= 24, then A+B will always
* have the value whichever between A and B has the largest absolute
* value. So, [0, 23] is the valid range. The smaller the limit
* value, the more precision will be maintained at a potential
* performance cost. Somewhat arbitrarilly split the range in half.
*/
if (abs(exp0 - exp1) > (23 / 2))
return false;
}
} else {
for (unsigned i = 0; i < num_components; i++) {
int exp0;
int exp1;
frexp(val0[swizzle0[i]].f64, &exp0);
frexp(val1[swizzle1[i]].f64, &exp1);
/* If the difference between exponents is >= 53, then A+B will always
* have the value whichever between A and B has the largest absolute
* value. So, [0, 52] is the valid range. The smaller the limit
* value, the more precision will be maintained at a potential
* performance cost. Somewhat arbitrarilly split the range in half.
*/
if (abs(exp0 - exp1) > (52 / 2))
return false;
}
}
return true;
}
static void
convert_flrp_instruction(nir_builder *bld,
struct u_vector *dead_flrp,
nir_alu_instr *alu,
bool always_precise,
bool have_ffma)
{
bld->cursor = nir_before_instr(&alu->instr);
/* There are two methods to implement flrp(x, y, t). The strictly correct
* implementation according to the GLSL spec is:
*
* x(1 - t) + yt
*
* This can also be implemented using two chained FMAs
*
* fma(y, t, fma(-x, t, x))
*
* This method, using either formulation, has better precision when the
* difference between x and y is very large. It guarantess that flrp(x, y,
* 1) = y. For example, flrp(1e38, 1.0, 1.0) is 1.0. This is correct.
*
* The other possible implementation is:
*
* x + t(y - x)
*
* This can also be formuated as an FMA:
*
* fma(y - x, t, x)
*
* For this implementation, flrp(1e38, 1.0, 1.0) is 0.0. Since 1.0 was
* expected, that's a pretty significant error.
*
* The choice made for lowering depends on a number of factors.
*
* - If the flrp is marked precise and FMA is supported:
*
* fma(y, t, fma(-x, t, x))
*
* This is strictly correct (maybe?), and the cost is two FMA
* instructions. It at least maintains the flrp(x, y, 1.0) == y
* condition.
*
* - If the flrp is marked precise and FMA is not supported:
*
* x(1 - t) + yt
*
* This is strictly correct, and the cost is 4 instructions. If FMA is
* supported, this may or may not be reduced to 3 instructions (a
* subtract, a multiply, and an FMA)... but in that case the other
* formulation should have been used.
*/
if (alu->exact) {
if (have_ffma)
replace_with_strict_ffma(bld, dead_flrp, alu);
else
replace_with_strict(bld, dead_flrp, alu);
return;
}
/*
* - If x and y are both immediates and the relative magnitude of the
* values is similar (such that x-y does not lose too much precision):
*
* x + t(x - y)
*
* We rely on constant folding to eliminate x-y, and we rely on
* nir_opt_algebraic to possibly generate an FMA. The cost is either one
* FMA or two instructions.
*/
if (sources_are_constants_with_similar_magnitudes(alu)) {
replace_with_fast(bld, dead_flrp, alu);
return;
}
if (have_ffma) {
if (always_precise) {
replace_with_strict_ffma(bld, dead_flrp, alu);
return;
}
} else {
if (always_precise) {
replace_with_strict(bld, dead_flrp, alu);
return;
}
}
/*
* - Otherwise
*
* x + t(x - y)
*/
replace_with_fast(bld, dead_flrp, alu);
}
static void
lower_flrp_impl(nir_function_impl *impl,
struct u_vector *dead_flrp,
unsigned lowering_mask,
bool always_precise,
bool have_ffma)
{
nir_builder b;
nir_builder_init(&b, impl);
nir_foreach_block(block, impl) {
nir_foreach_instr_safe(instr, block) {
if (instr->type == nir_instr_type_alu) {
nir_alu_instr *const alu = nir_instr_as_alu(instr);
if (alu->op == nir_op_flrp &&
(alu->dest.dest.ssa.bit_size & lowering_mask)) {
convert_flrp_instruction(&b, dead_flrp, alu, always_precise,
have_ffma);
}
}
}
}
nir_metadata_preserve(impl, nir_metadata_block_index |
nir_metadata_dominance);
}
/**
* \param lowering_mask - Bitwise-or of the bit sizes that need to be lowered
* (e.g., 16 | 64 if only 16-bit and 64-bit flrp need
* lowering).
* \param always_precise - Always require precise lowering for flrp. This
* will always lower flrp to (a * (1 - c)) + (b * c).
* \param have_ffma - Set to true if the GPU has an FFMA instruction that
* should be used.
*/
bool
nir_lower_flrp(nir_shader *shader,
unsigned lowering_mask,
bool always_precise,
bool have_ffma)
{
struct u_vector dead_flrp;
if (!u_vector_init(&dead_flrp, sizeof(struct nir_alu_instr *), 64))
return false;
nir_foreach_function(function, shader) {
if (function->impl) {
lower_flrp_impl(function->impl, &dead_flrp, lowering_mask,
always_precise, have_ffma);
}
}
/* Progress was made if the dead list is not empty. Remove all the
* instructions from the dead list.
*/
const bool progress = u_vector_length(&dead_flrp) != 0;
struct nir_alu_instr **instr;
u_vector_foreach(instr, &dead_flrp)
nir_instr_remove(&(*instr)->instr);
u_vector_finish(&dead_flrp);
return progress;
}