mesa/src/amd/compiler/aco_validate.cpp

495 lines
23 KiB
C++
Raw Normal View History

/*
* Copyright © 2018 Valve Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
*/
#include "aco_ir.h"
#include <array>
#include <map>
namespace aco {
#ifndef NDEBUG
void perfwarn(bool cond, const char *msg, Instruction *instr)
{
if (cond) {
fprintf(stderr, "ACO performance warning: %s\n", msg);
if (instr) {
fprintf(stderr, "instruction: ");
aco_print_instr(instr, stderr);
fprintf(stderr, "\n");
}
if (debug_flags & DEBUG_PERFWARN)
exit(1);
}
}
#endif
void validate(Program* program, FILE * output)
{
if (!(debug_flags & DEBUG_VALIDATE))
return;
bool is_valid = true;
auto check = [&output, &is_valid](bool check, const char * msg, aco::Instruction * instr) -> void {
if (!check) {
fprintf(output, "%s: ", msg);
aco_print_instr(instr, output);
fprintf(output, "\n");
is_valid = false;
}
};
auto check_block = [&output, &is_valid](bool check, const char * msg, aco::Block * block) -> void {
if (!check) {
fprintf(output, "%s: BB%u\n", msg, block->index);
is_valid = false;
}
};
for (Block& block : program->blocks) {
for (aco_ptr<Instruction>& instr : block.instructions) {
/* check base format */
Format base_format = instr->format;
base_format = (Format)((uint32_t)base_format & ~(uint32_t)Format::SDWA);
base_format = (Format)((uint32_t)base_format & ~(uint32_t)Format::DPP);
if ((uint32_t)base_format & (uint32_t)Format::VOP1)
base_format = Format::VOP1;
else if ((uint32_t)base_format & (uint32_t)Format::VOP2)
base_format = Format::VOP2;
else if ((uint32_t)base_format & (uint32_t)Format::VOPC)
base_format = Format::VOPC;
else if ((uint32_t)base_format & (uint32_t)Format::VINTRP)
base_format = Format::VINTRP;
check(base_format == instr_info.format[(int)instr->opcode], "Wrong base format for instruction", instr.get());
/* check VOP3 modifiers */
if (((uint32_t)instr->format & (uint32_t)Format::VOP3) && instr->format != Format::VOP3) {
check(base_format == Format::VOP2 ||
base_format == Format::VOP1 ||
base_format == Format::VOPC ||
base_format == Format::VINTRP,
"Format cannot have VOP3A/VOP3B applied", instr.get());
}
/* check for undefs */
for (unsigned i = 0; i < instr->operands.size(); i++) {
if (instr->operands[i].isUndefined()) {
bool flat = instr->format == Format::FLAT || instr->format == Format::SCRATCH || instr->format == Format::GLOBAL;
bool can_be_undef = is_phi(instr) || instr->format == Format::EXP ||
instr->format == Format::PSEUDO_REDUCTION ||
(flat && i == 1) || (instr->format == Format::MIMG && i == 2) ||
((instr->format == Format::MUBUF || instr->format == Format::MTBUF) && i == 0);
check(can_be_undef, "Undefs can only be used in certain operands", instr.get());
}
}
/* check num literals */
if (instr->isSALU() || instr->isVALU()) {
unsigned num_literals = 0;
for (unsigned i = 0; i < instr->operands.size(); i++)
{
if (instr->operands[i].isLiteral() && instr->isVOP3() && program->chip_class >= GFX10) {
num_literals++;
} else if (instr->operands[i].isLiteral()) {
check(instr->format == Format::SOP1 ||
instr->format == Format::SOP2 ||
instr->format == Format::SOPC ||
instr->format == Format::VOP1 ||
instr->format == Format::VOP2 ||
instr->format == Format::VOPC,
"Literal applied on wrong instruction format", instr.get());
num_literals++;
check(!instr->isVALU() || i == 0 || i == 2, "Wrong source position for Literal argument", instr.get());
}
}
check(num_literals <= 1, "Only 1 Literal allowed", instr.get());
/* check num sgprs for VALU */
if (instr->isVALU()) {
check(instr->definitions[0].getTemp().type() == RegType::vgpr ||
(int) instr->format & (int) Format::VOPC ||
instr->opcode == aco_opcode::v_readfirstlane_b32 ||
instr->opcode == aco_opcode::v_readlane_b32,
"Wrong Definition type for VALU instruction", instr.get());
unsigned num_sgpr = 0;
unsigned sgpr_idx = instr->operands.size();
for (unsigned i = 0; i < instr->operands.size(); i++)
{
if (instr->operands[i].isTemp() && instr->operands[i].regClass().type() == RegType::sgpr) {
check(i != 1 || (int) instr->format & (int) Format::VOP3A, "Wrong source position for SGPR argument", instr.get());
if (sgpr_idx == instr->operands.size() || instr->operands[sgpr_idx].tempId() != instr->operands[i].tempId())
num_sgpr++;
sgpr_idx = i;
}
if (instr->operands[i].isConstant() && !instr->operands[i].isLiteral())
check(i == 0 || (int) instr->format & (int) Format::VOP3A, "Wrong source position for constant argument", instr.get());
}
check(num_sgpr + num_literals <= 1, "Only 1 Literal OR 1 SGPR allowed", instr.get());
}
if (instr->format == Format::SOP1 || instr->format == Format::SOP2) {
check(instr->definitions[0].getTemp().type() == RegType::sgpr, "Wrong Definition type for SALU instruction", instr.get());
for (const Operand& op : instr->operands) {
check(op.isConstant() || op.regClass().type() <= RegType::sgpr,
"Wrong Operand type for SALU instruction", instr.get());
}
}
}
switch (instr->format) {
case Format::PSEUDO: {
if (instr->opcode == aco_opcode::p_create_vector) {
unsigned size = 0;
for (const Operand& op : instr->operands) {
size += op.size();
}
check(size == instr->definitions[0].size(), "Definition size does not match operand sizes", instr.get());
if (instr->definitions[0].getTemp().type() == RegType::sgpr) {
for (const Operand& op : instr->operands) {
check(op.isConstant() || op.regClass().type() == RegType::sgpr,
"Wrong Operand type for scalar vector", instr.get());
}
}
} else if (instr->opcode == aco_opcode::p_extract_vector) {
check((instr->operands[0].isTemp()) && instr->operands[1].isConstant(), "Wrong Operand types", instr.get());
check(instr->operands[1].constantValue() < instr->operands[0].size(), "Index out of range", instr.get());
check(instr->definitions[0].getTemp().type() == RegType::vgpr || instr->operands[0].regClass().type() == RegType::sgpr,
"Cannot extract SGPR value from VGPR vector", instr.get());
} else if (instr->opcode == aco_opcode::p_parallelcopy) {
check(instr->definitions.size() == instr->operands.size(), "Number of Operands does not match number of Definitions", instr.get());
for (unsigned i = 0; i < instr->operands.size(); i++) {
if (instr->operands[i].isTemp())
check((instr->definitions[i].getTemp().type() == instr->operands[i].regClass().type()) ||
(instr->definitions[i].getTemp().type() == RegType::vgpr && instr->operands[i].regClass().type() == RegType::sgpr),
"Operand and Definition types do not match", instr.get());
}
} else if (instr->opcode == aco_opcode::p_phi) {
check(instr->operands.size() == block.logical_preds.size(), "Number of Operands does not match number of predecessors", instr.get());
check(instr->definitions[0].getTemp().type() == RegType::vgpr || instr->definitions[0].getTemp().regClass() == program->lane_mask, "Logical Phi Definition must be vgpr or divergent boolean", instr.get());
} else if (instr->opcode == aco_opcode::p_linear_phi) {
for (const Operand& op : instr->operands)
check(!op.isTemp() || op.getTemp().is_linear(), "Wrong Operand type", instr.get());
check(instr->operands.size() == block.linear_preds.size(), "Number of Operands does not match number of predecessors", instr.get());
}
break;
}
case Format::SMEM: {
if (instr->operands.size() >= 1)
check(instr->operands[0].isTemp() && instr->operands[0].regClass().type() == RegType::sgpr, "SMEM operands must be sgpr", instr.get());
if (instr->operands.size() >= 2)
check(instr->operands[1].isConstant() || (instr->operands[1].isTemp() && instr->operands[1].regClass().type() == RegType::sgpr),
"SMEM offset must be constant or sgpr", instr.get());
if (!instr->definitions.empty())
check(instr->definitions[0].getTemp().type() == RegType::sgpr, "SMEM result must be sgpr", instr.get());
break;
}
case Format::MTBUF:
case Format::MUBUF:
case Format::MIMG: {
check(instr->operands.size() > 1, "VMEM instructions must have at least one operand", instr.get());
check(instr->operands[0].hasRegClass() && instr->operands[0].regClass().type() == RegType::vgpr,
"VADDR must be in vgpr for VMEM instructions", instr.get());
check(instr->operands[1].isTemp() && instr->operands[1].regClass().type() == RegType::sgpr, "VMEM resource constant must be sgpr", instr.get());
check(instr->operands.size() < 4 || (instr->operands[3].isTemp() && instr->operands[3].regClass().type() == RegType::vgpr), "VMEM write data must be vgpr", instr.get());
break;
}
case Format::DS: {
for (const Operand& op : instr->operands) {
check((op.isTemp() && op.regClass().type() == RegType::vgpr) || op.physReg() == m0,
"Only VGPRs are valid DS instruction operands", instr.get());
}
if (!instr->definitions.empty())
check(instr->definitions[0].getTemp().type() == RegType::vgpr, "DS instruction must return VGPR", instr.get());
break;
}
case Format::EXP: {
for (unsigned i = 0; i < 4; i++)
check(instr->operands[i].hasRegClass() && instr->operands[i].regClass().type() == RegType::vgpr,
"Only VGPRs are valid Export arguments", instr.get());
break;
}
case Format::FLAT:
check(instr->operands[1].isUndefined(), "Flat instructions don't support SADDR", instr.get());
/* fallthrough */
case Format::GLOBAL:
case Format::SCRATCH: {
check(instr->operands[0].isTemp() && instr->operands[0].regClass().type() == RegType::vgpr, "FLAT/GLOBAL/SCRATCH address must be vgpr", instr.get());
check(instr->operands[1].hasRegClass() && instr->operands[1].regClass().type() == RegType::sgpr,
"FLAT/GLOBAL/SCRATCH sgpr address must be undefined or sgpr", instr.get());
if (!instr->definitions.empty())
check(instr->definitions[0].getTemp().type() == RegType::vgpr, "FLAT/GLOBAL/SCRATCH result must be vgpr", instr.get());
else
check(instr->operands[2].regClass().type() == RegType::vgpr, "FLAT/GLOBAL/SCRATCH data must be vgpr", instr.get());
break;
}
default:
break;
}
}
}
/* validate CFG */
for (unsigned i = 0; i < program->blocks.size(); i++) {
Block& block = program->blocks[i];
check_block(block.index == i, "block.index must match actual index", &block);
/* predecessors/successors should be sorted */
for (unsigned j = 0; j + 1 < block.linear_preds.size(); j++)
check_block(block.linear_preds[j] < block.linear_preds[j + 1], "linear predecessors must be sorted", &block);
for (unsigned j = 0; j + 1 < block.logical_preds.size(); j++)
check_block(block.logical_preds[j] < block.logical_preds[j + 1], "logical predecessors must be sorted", &block);
for (unsigned j = 0; j + 1 < block.linear_succs.size(); j++)
check_block(block.linear_succs[j] < block.linear_succs[j + 1], "linear successors must be sorted", &block);
for (unsigned j = 0; j + 1 < block.logical_succs.size(); j++)
check_block(block.logical_succs[j] < block.logical_succs[j + 1], "logical successors must be sorted", &block);
/* critical edges are not allowed */
if (block.linear_preds.size() > 1) {
for (unsigned pred : block.linear_preds)
check_block(program->blocks[pred].linear_succs.size() == 1, "linear critical edges are not allowed", &program->blocks[pred]);
for (unsigned pred : block.logical_preds)
check_block(program->blocks[pred].logical_succs.size() == 1, "logical critical edges are not allowed", &program->blocks[pred]);
}
}
assert(is_valid);
}
/* RA validation */
namespace {
struct Location {
Location() : block(NULL), instr(NULL) {}
Block *block;
Instruction *instr; //NULL if it's the block's live-in
};
struct Assignment {
Location defloc;
Location firstloc;
PhysReg reg;
};
bool ra_fail(FILE *output, Location loc, Location loc2, const char *fmt, ...) {
va_list args;
va_start(args, fmt);
char msg[1024];
vsprintf(msg, fmt, args);
va_end(args);
fprintf(stderr, "RA error found at instruction in BB%d:\n", loc.block->index);
if (loc.instr) {
aco_print_instr(loc.instr, stderr);
fprintf(stderr, "\n%s", msg);
} else {
fprintf(stderr, "%s", msg);
}
if (loc2.block) {
fprintf(stderr, " in BB%d:\n", loc2.block->index);
aco_print_instr(loc2.instr, stderr);
}
fprintf(stderr, "\n\n");
return true;
}
} /* end namespace */
bool validate_ra(Program *program, const struct radv_nir_compiler_options *options, FILE *output) {
if (!(debug_flags & DEBUG_VALIDATE_RA))
return false;
bool err = false;
aco::live live_vars = aco::live_var_analysis(program, options);
std::vector<std::vector<Temp>> phi_sgpr_ops(program->blocks.size());
std::map<unsigned, Assignment> assignments;
for (Block& block : program->blocks) {
Location loc;
loc.block = &block;
for (aco_ptr<Instruction>& instr : block.instructions) {
if (instr->opcode == aco_opcode::p_phi) {
for (unsigned i = 0; i < instr->operands.size(); i++) {
if (instr->operands[i].isTemp() &&
instr->operands[i].getTemp().type() == RegType::sgpr &&
instr->operands[i].isFirstKill())
phi_sgpr_ops[block.logical_preds[i]].emplace_back(instr->operands[i].getTemp());
}
}
loc.instr = instr.get();
for (unsigned i = 0; i < instr->operands.size(); i++) {
Operand& op = instr->operands[i];
if (!op.isTemp())
continue;
if (!op.isFixed())
err |= ra_fail(output, loc, Location(), "Operand %d is not assigned a register", i);
if (assignments.count(op.tempId()) && assignments[op.tempId()].reg != op.physReg())
err |= ra_fail(output, loc, assignments.at(op.tempId()).firstloc, "Operand %d has an inconsistent register assignment with instruction", i);
if ((op.getTemp().type() == RegType::vgpr && op.physReg() + op.size() > 256 + program->config->num_vgprs) ||
(op.getTemp().type() == RegType::sgpr && op.physReg() + op.size() > program->config->num_sgprs && op.physReg() < program->sgpr_limit))
err |= ra_fail(output, loc, assignments.at(op.tempId()).firstloc, "Operand %d has an out-of-bounds register assignment", i);
if (!assignments[op.tempId()].firstloc.block)
assignments[op.tempId()].firstloc = loc;
if (!assignments[op.tempId()].defloc.block)
assignments[op.tempId()].reg = op.physReg();
}
for (unsigned i = 0; i < instr->definitions.size(); i++) {
Definition& def = instr->definitions[i];
if (!def.isTemp())
continue;
if (!def.isFixed())
err |= ra_fail(output, loc, Location(), "Definition %d is not assigned a register", i);
if (assignments[def.tempId()].defloc.block)
err |= ra_fail(output, loc, assignments.at(def.tempId()).defloc, "Temporary %%%d also defined by instruction", def.tempId());
if ((def.getTemp().type() == RegType::vgpr && def.physReg() + def.size() > 256 + program->config->num_vgprs) ||
(def.getTemp().type() == RegType::sgpr && def.physReg() + def.size() > program->config->num_sgprs && def.physReg() < program->sgpr_limit))
err |= ra_fail(output, loc, assignments.at(def.tempId()).firstloc, "Definition %d has an out-of-bounds register assignment", i);
if (!assignments[def.tempId()].firstloc.block)
assignments[def.tempId()].firstloc = loc;
assignments[def.tempId()].defloc = loc;
assignments[def.tempId()].reg = def.physReg();
}
}
}
for (Block& block : program->blocks) {
Location loc;
loc.block = &block;
std::array<unsigned, 512> regs;
regs.fill(0);
std::set<Temp> live;
live.insert(live_vars.live_out[block.index].begin(), live_vars.live_out[block.index].end());
/* remove killed p_phi sgpr operands */
for (Temp tmp : phi_sgpr_ops[block.index])
live.erase(tmp);
/* check live out */
for (Temp tmp : live) {
PhysReg reg = assignments.at(tmp.id()).reg;
for (unsigned i = 0; i < tmp.size(); i++) {
if (regs[reg + i]) {
err |= ra_fail(output, loc, Location(), "Assignment of element %d of %%%d already taken by %%%d in live-out", i, tmp.id(), regs[reg + i]);
}
regs[reg + i] = tmp.id();
}
}
regs.fill(0);
for (auto it = block.instructions.rbegin(); it != block.instructions.rend(); ++it) {
aco_ptr<Instruction>& instr = *it;
/* check killed p_phi sgpr operands */
if (instr->opcode == aco_opcode::p_logical_end) {
for (Temp tmp : phi_sgpr_ops[block.index]) {
PhysReg reg = assignments.at(tmp.id()).reg;
for (unsigned i = 0; i < tmp.size(); i++) {
if (regs[reg + i])
err |= ra_fail(output, loc, Location(), "Assignment of element %d of %%%d already taken by %%%d in live-out", i, tmp.id(), regs[reg + i]);
}
live.emplace(tmp);
}
}
for (const Definition& def : instr->definitions) {
if (!def.isTemp())
continue;
live.erase(def.getTemp());
}
/* don't count phi operands as live-in, since they are actually
* killed when they are copied at the predecessor */
if (instr->opcode != aco_opcode::p_phi && instr->opcode != aco_opcode::p_linear_phi) {
for (const Operand& op : instr->operands) {
if (!op.isTemp())
continue;
live.insert(op.getTemp());
}
}
}
for (Temp tmp : live) {
PhysReg reg = assignments.at(tmp.id()).reg;
for (unsigned i = 0; i < tmp.size(); i++)
regs[reg + i] = tmp.id();
}
for (aco_ptr<Instruction>& instr : block.instructions) {
loc.instr = instr.get();
/* remove killed p_phi operands from regs */
if (instr->opcode == aco_opcode::p_logical_end) {
for (Temp tmp : phi_sgpr_ops[block.index]) {
PhysReg reg = assignments.at(tmp.id()).reg;
regs[reg] = 0;
}
}
if (instr->opcode != aco_opcode::p_phi && instr->opcode != aco_opcode::p_linear_phi) {
for (const Operand& op : instr->operands) {
if (!op.isTemp())
continue;
if (op.isFirstKill()) {
for (unsigned j = 0; j < op.getTemp().size(); j++)
regs[op.physReg() + j] = 0;
}
}
}
for (unsigned i = 0; i < instr->definitions.size(); i++) {
Definition& def = instr->definitions[i];
if (!def.isTemp())
continue;
Temp tmp = def.getTemp();
PhysReg reg = assignments.at(tmp.id()).reg;
for (unsigned j = 0; j < tmp.size(); j++) {
if (regs[reg + j])
err |= ra_fail(output, loc, assignments.at(regs[reg + i]).defloc, "Assignment of element %d of %%%d already taken by %%%d from instruction", i, tmp.id(), regs[reg + j]);
regs[reg + j] = tmp.id();
}
}
for (const Definition& def : instr->definitions) {
if (!def.isTemp())
continue;
if (def.isKill()) {
for (unsigned j = 0; j < def.getTemp().size(); j++)
regs[def.physReg() + j] = 0;
}
}
}
}
return err;
}
}