mesa/src/amd/compiler/aco_lower_phis.cpp

331 lines
12 KiB
C++
Raw Normal View History

/*
* Copyright © 2019 Valve Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
*/
#include "aco_builder.h"
#include "aco_ir.h"
#include <algorithm>
#include <map>
#include <vector>
namespace aco {
enum class pred_defined : uint8_t {
undef = 0,
const_1 = 1,
const_0 = 2,
temp = 3,
};
MESA_DEFINE_CPP_ENUM_BITFIELD_OPERATORS(pred_defined);
struct ssa_state {
bool checked_preds_for_uniform;
bool all_preds_uniform;
unsigned loop_nest_depth;
std::vector<pred_defined> any_pred_defined;
std::vector<bool> visited;
std::vector<Operand> outputs; /* the output per block */
};
Operand
get_ssa(Program* program, unsigned block_idx, ssa_state* state, bool input)
{
if (!input) {
if (state->visited[block_idx])
return state->outputs[block_idx];
/* otherwise, output == input */
Operand output = get_ssa(program, block_idx, state, true);
state->visited[block_idx] = true;
state->outputs[block_idx] = output;
return output;
}
/* retrieve the Operand by checking the predecessors */
if (state->any_pred_defined[block_idx] == pred_defined::undef)
return Operand(program->lane_mask);
Block& block = program->blocks[block_idx];
size_t pred = block.linear_preds.size();
Operand op;
if (block.loop_nest_depth < state->loop_nest_depth) {
op = Operand(program->lane_mask);
} else if (block.loop_nest_depth > state->loop_nest_depth || pred == 1 ||
block.kind & block_kind_loop_exit) {
op = get_ssa(program, block.linear_preds[0], state, false);
} else {
assert(pred > 1);
bool previously_visited = state->visited[block_idx];
/* potential recursion: anchor at loop header */
if (block.kind & block_kind_loop_header) {
assert(!previously_visited);
previously_visited = true;
state->visited[block_idx] = true;
state->outputs[block_idx] = Operand(Temp(program->allocateTmp(program->lane_mask)));
}
/* collect predecessor output operands */
std::vector<Operand> ops(pred);
for (unsigned i = 0; i < pred; i++)
ops[i] = get_ssa(program, block.linear_preds[i], state, false);
/* check triviality */
if (std::all_of(ops.begin() + 1, ops.end(), [&](Operand same) { return same == ops[0]; }))
return ops[0];
/* Return if this was handled in a recursive call by a loop header phi */
if (!previously_visited && state->visited[block_idx])
return state->outputs[block_idx];
if (block.kind & block_kind_loop_header)
op = state->outputs[block_idx];
else
op = Operand(Temp(program->allocateTmp(program->lane_mask)));
/* create phi */
aco_ptr<Pseudo_instruction> phi{
create_instruction<Pseudo_instruction>(aco_opcode::p_linear_phi, Format::PSEUDO, pred, 1)};
for (unsigned i = 0; i < pred; i++)
phi->operands[i] = ops[i];
phi->definitions[0] = Definition(op.getTemp());
block.instructions.emplace(block.instructions.begin(), std::move(phi));
}
assert(op.size() == program->lane_mask.size());
return op;
}
void
insert_before_logical_end(Block* block, aco_ptr<Instruction> instr)
{
auto IsLogicalEnd = [](const aco_ptr<Instruction>& inst) -> bool
{ return inst->opcode == aco_opcode::p_logical_end; };
auto it = std::find_if(block->instructions.crbegin(), block->instructions.crend(), IsLogicalEnd);
if (it == block->instructions.crend()) {
assert(block->instructions.back()->isBranch());
block->instructions.insert(std::prev(block->instructions.end()), std::move(instr));
} else {
block->instructions.insert(std::prev(it.base()), std::move(instr));
}
}
void
build_merge_code(Program* program, ssa_state* state, Block* block, Operand cur)
{
unsigned block_idx = block->index;
Definition dst = Definition(state->outputs[block_idx].getTemp());
Operand prev = get_ssa(program, block_idx, state, true);
if (cur.isUndefined())
cur = Operand::zero(program->lane_mask.bytes());
Builder bld(program);
auto IsLogicalEnd = [](const aco_ptr<Instruction>& instr) -> bool
{ return instr->opcode == aco_opcode::p_logical_end; };
auto it = std::find_if(block->instructions.rbegin(), block->instructions.rend(), IsLogicalEnd);
assert(it != block->instructions.rend());
bld.reset(&block->instructions, std::prev(it.base()));
pred_defined defined = state->any_pred_defined[block_idx];
if (defined == pred_defined::undef) {
return;
} else if (defined == pred_defined::const_0) {
bld.sop2(Builder::s_and, dst, bld.def(s1, scc), cur, Operand(exec, bld.lm));
return;
} else if (defined == pred_defined::const_1) {
bld.sop2(Builder::s_orn2, dst, bld.def(s1, scc), cur, Operand(exec, bld.lm));
return;
}
assert(prev.isTemp());
if (cur.isConstant()) {
if (cur.constantValue())
bld.sop2(Builder::s_or, dst, bld.def(s1, scc), prev, Operand(exec, bld.lm));
else
bld.sop2(Builder::s_andn2, dst, bld.def(s1, scc), prev, Operand(exec, bld.lm));
return;
}
prev =
bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), prev, Operand(exec, bld.lm));
cur = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), cur, Operand(exec, bld.lm));
bld.sop2(Builder::s_or, dst, bld.def(s1, scc), prev, cur);
return;
}
void
init_any_pred_defined(Program* program, ssa_state* state, Block* block, aco_ptr<Instruction>& phi)
{
std::fill(state->any_pred_defined.begin(), state->any_pred_defined.end(), pred_defined::undef);
for (unsigned i = 0; i < block->logical_preds.size(); i++) {
if (phi->operands[i].isUndefined())
continue;
pred_defined defined = pred_defined::temp;
if (phi->operands[i].isConstant())
defined = phi->operands[i].constantValue() ? pred_defined::const_1 : pred_defined::const_0;
for (unsigned succ : program->blocks[block->logical_preds[i]].linear_succs)
state->any_pred_defined[succ] |= defined;
}
unsigned start = block->logical_preds[0];
unsigned end = block->index;
/* for loop exit phis, start at the loop header */
if (block->kind & block_kind_loop_exit) {
while (program->blocks[start - 1].loop_nest_depth >= state->loop_nest_depth)
start--;
/* If the loop-header has a back-edge, we need to insert a phi.
* This will contain a defined value */
if (program->blocks[start].linear_preds.size() > 1)
state->any_pred_defined[start] = pred_defined::temp;
}
/* for loop header phis, end at the loop exit */
if (block->kind & block_kind_loop_header) {
while (program->blocks[end].loop_nest_depth >= state->loop_nest_depth)
end++;
/* don't propagate the incoming value */
state->any_pred_defined[block->index] = pred_defined::undef;
}
for (unsigned j = start; j < end; j++) {
if (state->any_pred_defined[j] == pred_defined::undef)
continue;
for (unsigned succ : program->blocks[j].linear_succs)
state->any_pred_defined[succ] |= state->any_pred_defined[j];
}
state->any_pred_defined[block->index] = pred_defined::undef;
}
void
lower_divergent_bool_phi(Program* program, ssa_state* state, Block* block,
aco_ptr<Instruction>& phi)
{
Builder bld(program);
if (!state->checked_preds_for_uniform) {
state->all_preds_uniform = !(block->kind & block_kind_merge) &&
block->linear_preds.size() == block->logical_preds.size();
for (unsigned pred : block->logical_preds)
state->all_preds_uniform =
state->all_preds_uniform && (program->blocks[pred].kind & block_kind_uniform);
state->checked_preds_for_uniform = true;
}
if (state->all_preds_uniform) {
phi->opcode = aco_opcode::p_linear_phi;
return;
}
/* do this here to avoid resizing in case of no boolean phis */
state->visited.resize(program->blocks.size());
state->outputs.resize(program->blocks.size());
state->any_pred_defined.resize(program->blocks.size());
state->loop_nest_depth = block->loop_nest_depth;
if (block->kind & block_kind_loop_exit)
state->loop_nest_depth += 1;
std::fill(state->visited.begin(), state->visited.end(), false);
init_any_pred_defined(program, state, block, phi);
for (unsigned i = 0; i < phi->operands.size(); i++) {
unsigned pred = block->logical_preds[i];
if (state->any_pred_defined[pred] != pred_defined::undef)
state->outputs[pred] = Operand(bld.tmp(bld.lm));
else
state->outputs[pred] = phi->operands[i];
assert(state->outputs[pred].size() == bld.lm.size());
state->visited[pred] = true;
}
for (unsigned i = 0; i < phi->operands.size(); i++)
build_merge_code(program, state, &program->blocks[block->logical_preds[i]], phi->operands[i]);
unsigned num_preds = block->linear_preds.size();
if (phi->operands.size() != num_preds) {
Pseudo_instruction* new_phi{create_instruction<Pseudo_instruction>(
aco_opcode::p_linear_phi, Format::PSEUDO, num_preds, 1)};
new_phi->definitions[0] = phi->definitions[0];
phi.reset(new_phi);
} else {
phi->opcode = aco_opcode::p_linear_phi;
}
assert(phi->operands.size() == num_preds);
for (unsigned i = 0; i < num_preds; i++)
phi->operands[i] = get_ssa(program, block->linear_preds[i], state, false);
return;
}
void
lower_subdword_phis(Program* program, Block* block, aco_ptr<Instruction>& phi)
{
Builder bld(program);
for (unsigned i = 0; i < phi->operands.size(); i++) {
if (phi->operands[i].isUndefined())
continue;
if (phi->operands[i].regClass() == phi->definitions[0].regClass())
continue;
assert(phi->operands[i].isTemp());
Block* pred = &program->blocks[block->logical_preds[i]];
Temp phi_src = phi->operands[i].getTemp();
assert(phi_src.regClass().type() == RegType::sgpr);
Temp tmp = bld.tmp(RegClass(RegType::vgpr, phi_src.size()));
insert_before_logical_end(pred, bld.copy(Definition(tmp), phi_src).get_ptr());
Temp new_phi_src = bld.tmp(phi->definitions[0].regClass());
insert_before_logical_end(pred, bld.pseudo(aco_opcode::p_extract_vector,
Definition(new_phi_src), tmp, Operand::zero())
.get_ptr());
phi->operands[i].setTemp(new_phi_src);
}
return;
}
void
lower_phis(Program* program)
{
ssa_state state;
for (Block& block : program->blocks) {
state.checked_preds_for_uniform = false;
for (aco_ptr<Instruction>& phi : block.instructions) {
if (phi->opcode == aco_opcode::p_phi) {
assert(program->wave_size == 64 ? phi->definitions[0].regClass() != s1
: phi->definitions[0].regClass() != s2);
if (phi->definitions[0].regClass() == program->lane_mask)
lower_divergent_bool_phi(program, &state, &block, phi);
else if (phi->definitions[0].regClass().is_subdword())
lower_subdword_phis(program, &block, phi);
} else if (!is_phi(phi)) {
break;
}
}
}
}
} // namespace aco