mesa/src/amd/compiler/aco_instruction_selection_setup.cpp

1367 lines
54 KiB
C++
Raw Normal View History

/*
* Copyright © 2018 Valve Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
*/
#include <array>
#include <unordered_map>
#include "aco_ir.h"
#include "nir.h"
#include "vulkan/radv_shader.h"
#include "vulkan/radv_descriptor_set.h"
#include "sid.h"
#include "ac_exp_param.h"
#include "util/u_math.h"
#define MAX_INLINE_PUSH_CONSTS 8
namespace aco {
enum fs_input {
persp_sample_p1,
persp_sample_p2,
persp_center_p1,
persp_center_p2,
persp_centroid_p1,
persp_centroid_p2,
persp_pull_model,
linear_sample_p1,
linear_sample_p2,
linear_center_p1,
linear_center_p2,
linear_centroid_p1,
linear_centroid_p2,
line_stipple,
frag_pos_0,
frag_pos_1,
frag_pos_2,
frag_pos_3,
front_face,
ancillary,
sample_coverage,
fixed_pt,
max_inputs,
};
struct vs_output_state {
uint8_t mask[VARYING_SLOT_VAR31 + 1];
Temp outputs[VARYING_SLOT_VAR31 + 1][4];
};
struct isel_context {
struct radv_nir_compiler_options *options;
Program *program;
nir_shader *shader;
uint32_t constant_data_offset;
Block *block;
bool *divergent_vals;
std::unique_ptr<Temp[]> allocated;
std::unordered_map<unsigned, std::array<Temp,4>> allocated_vec;
Stage stage; /* Stage */
struct {
bool has_branch;
uint16_t loop_nest_depth = 0;
struct {
unsigned header_idx;
Block* exit;
bool has_divergent_continue = false;
bool has_divergent_branch = false;
} parent_loop;
struct {
bool is_divergent = false;
} parent_if;
bool exec_potentially_empty = false;
} cf_info;
/* scratch */
bool scratch_enabled = false;
Temp private_segment_buffer = Temp(0, s2); /* also the part of the scratch descriptor on compute */
Temp scratch_offset = Temp(0, s1);
/* inputs common for merged stages */
Temp merged_wave_info = Temp(0, s1);
/* FS inputs */
bool fs_vgpr_args[fs_input::max_inputs];
Temp fs_inputs[fs_input::max_inputs];
Temp prim_mask = Temp(0, s1);
Temp descriptor_sets[MAX_SETS];
Temp push_constants = Temp(0, s1);
Temp inline_push_consts[MAX_INLINE_PUSH_CONSTS];
unsigned num_inline_push_consts = 0;
unsigned base_inline_push_consts = 0;
/* VS inputs */
Temp vertex_buffers = Temp(0, s1);
Temp base_vertex = Temp(0, s1);
Temp start_instance = Temp(0, s1);
Temp draw_id = Temp(0, s1);
Temp view_index = Temp(0, s1);
Temp es2gs_offset = Temp(0, s1);
Temp vertex_id = Temp(0, v1);
Temp rel_auto_id = Temp(0, v1);
Temp instance_id = Temp(0, v1);
Temp vs_prim_id = Temp(0, v1);
bool needs_instance_id;
/* CS inputs */
Temp num_workgroups[3] = {Temp(0, s1), Temp(0, s1), Temp(0, s1)};
Temp workgroup_ids[3] = {Temp(0, s1), Temp(0, s1), Temp(0, s1)};
Temp tg_size = Temp(0, s1);
Temp local_invocation_ids[3] = {Temp(0, v1), Temp(0, v1), Temp(0, v1)};
/* VS output information */
unsigned num_clip_distances;
unsigned num_cull_distances;
vs_output_state vs_output;
/* Streamout */
Temp streamout_buffers = Temp(0, s1);
Temp streamout_write_idx = Temp(0, s1);
Temp streamout_config = Temp(0, s1);
Temp streamout_offset[4] = {Temp(0, s1), Temp(0, s1), Temp(0, s1), Temp(0, s1)};
};
fs_input get_interp_input(nir_intrinsic_op intrin, enum glsl_interp_mode interp)
{
switch (interp) {
case INTERP_MODE_SMOOTH:
case INTERP_MODE_NONE:
if (intrin == nir_intrinsic_load_barycentric_pixel ||
intrin == nir_intrinsic_load_barycentric_at_sample ||
intrin == nir_intrinsic_load_barycentric_at_offset)
return fs_input::persp_center_p1;
else if (intrin == nir_intrinsic_load_barycentric_centroid)
return fs_input::persp_centroid_p1;
else if (intrin == nir_intrinsic_load_barycentric_sample)
return fs_input::persp_sample_p1;
break;
case INTERP_MODE_NOPERSPECTIVE:
if (intrin == nir_intrinsic_load_barycentric_pixel)
return fs_input::linear_center_p1;
else if (intrin == nir_intrinsic_load_barycentric_centroid)
return fs_input::linear_centroid_p1;
else if (intrin == nir_intrinsic_load_barycentric_sample)
return fs_input::linear_sample_p1;
break;
default:
break;
}
return fs_input::max_inputs;
}
void init_context(isel_context *ctx, nir_shader *shader)
{
nir_function_impl *impl = nir_shader_get_entrypoint(shader);
ctx->shader = shader;
ctx->divergent_vals = nir_divergence_analysis(shader, nir_divergence_view_index_uniform);
std::unique_ptr<Temp[]> allocated{new Temp[impl->ssa_alloc]()};
memset(&ctx->fs_vgpr_args, false, sizeof(ctx->fs_vgpr_args));
bool done = false;
while (!done) {
done = true;
nir_foreach_block(block, impl) {
nir_foreach_instr(instr, block) {
switch(instr->type) {
case nir_instr_type_alu: {
nir_alu_instr *alu_instr = nir_instr_as_alu(instr);
unsigned size = alu_instr->dest.dest.ssa.num_components;
if (alu_instr->dest.dest.ssa.bit_size == 64)
size *= 2;
RegType type = RegType::sgpr;
switch(alu_instr->op) {
case nir_op_fmul:
case nir_op_fadd:
case nir_op_fsub:
case nir_op_fmax:
case nir_op_fmin:
case nir_op_fmax3:
case nir_op_fmin3:
case nir_op_fmed3:
case nir_op_fmod:
case nir_op_frem:
case nir_op_fneg:
case nir_op_fabs:
case nir_op_fsat:
case nir_op_fsign:
case nir_op_frcp:
case nir_op_frsq:
case nir_op_fsqrt:
case nir_op_fexp2:
case nir_op_flog2:
case nir_op_ffract:
case nir_op_ffloor:
case nir_op_fceil:
case nir_op_ftrunc:
case nir_op_fround_even:
case nir_op_fsin:
case nir_op_fcos:
case nir_op_f2f32:
case nir_op_f2f64:
case nir_op_u2f32:
case nir_op_u2f64:
case nir_op_i2f32:
case nir_op_i2f64:
case nir_op_pack_half_2x16:
case nir_op_unpack_half_2x16_split_x:
case nir_op_unpack_half_2x16_split_y:
case nir_op_fddx:
case nir_op_fddy:
case nir_op_fddx_fine:
case nir_op_fddy_fine:
case nir_op_fddx_coarse:
case nir_op_fddy_coarse:
case nir_op_fquantize2f16:
case nir_op_ldexp:
case nir_op_frexp_sig:
case nir_op_frexp_exp:
case nir_op_cube_face_index:
case nir_op_cube_face_coord:
type = RegType::vgpr;
break;
case nir_op_flt:
case nir_op_fge:
case nir_op_feq:
case nir_op_fne:
size = 2;
break;
case nir_op_ilt:
case nir_op_ige:
case nir_op_ult:
case nir_op_uge:
size = alu_instr->src[0].src.ssa->bit_size == 64 ? 2 : 1;
/* fallthrough */
case nir_op_ieq:
case nir_op_ine:
case nir_op_i2b1:
if (ctx->divergent_vals[alu_instr->dest.dest.ssa.index]) {
size = 2;
} else {
for (unsigned i = 0; i < nir_op_infos[alu_instr->op].num_inputs; i++) {
if (allocated[alu_instr->src[i].src.ssa->index].type() == RegType::vgpr)
size = 2;
}
}
break;
case nir_op_f2i64:
case nir_op_f2u64:
case nir_op_b2i32:
case nir_op_b2f32:
case nir_op_f2i32:
case nir_op_f2u32:
type = ctx->divergent_vals[alu_instr->dest.dest.ssa.index] ? RegType::vgpr : RegType::sgpr;
break;
case nir_op_bcsel:
if (alu_instr->dest.dest.ssa.bit_size == 1) {
if (ctx->divergent_vals[alu_instr->dest.dest.ssa.index])
size = 2;
else if (allocated[alu_instr->src[1].src.ssa->index].regClass() == s2 &&
allocated[alu_instr->src[2].src.ssa->index].regClass() == s2)
size = 2;
else
size = 1;
} else {
if (ctx->divergent_vals[alu_instr->dest.dest.ssa.index]) {
type = RegType::vgpr;
} else {
if (allocated[alu_instr->src[1].src.ssa->index].type() == RegType::vgpr ||
allocated[alu_instr->src[2].src.ssa->index].type() == RegType::vgpr) {
type = RegType::vgpr;
}
}
if (alu_instr->src[1].src.ssa->num_components == 1 && alu_instr->src[2].src.ssa->num_components == 1) {
assert(allocated[alu_instr->src[1].src.ssa->index].size() == allocated[alu_instr->src[2].src.ssa->index].size());
size = allocated[alu_instr->src[1].src.ssa->index].size();
}
}
break;
case nir_op_mov:
if (alu_instr->dest.dest.ssa.bit_size == 1) {
size = allocated[alu_instr->src[0].src.ssa->index].size();
} else {
type = ctx->divergent_vals[alu_instr->dest.dest.ssa.index] ? RegType::vgpr : RegType::sgpr;
}
break;
case nir_op_inot:
case nir_op_ixor:
if (alu_instr->dest.dest.ssa.bit_size == 1) {
size = ctx->divergent_vals[alu_instr->dest.dest.ssa.index] ? 2 : 1;
break;
} else {
/* fallthrough */
}
default:
if (alu_instr->dest.dest.ssa.bit_size == 1) {
if (ctx->divergent_vals[alu_instr->dest.dest.ssa.index]) {
size = 2;
} else {
size = 2;
for (unsigned i = 0; i < nir_op_infos[alu_instr->op].num_inputs; i++) {
if (allocated[alu_instr->src[i].src.ssa->index].regClass() == s1) {
size = 1;
break;
}
}
}
} else {
for (unsigned i = 0; i < nir_op_infos[alu_instr->op].num_inputs; i++) {
if (allocated[alu_instr->src[i].src.ssa->index].type() == RegType::vgpr)
type = RegType::vgpr;
}
}
break;
}
allocated[alu_instr->dest.dest.ssa.index] = Temp(0, RegClass(type, size));
break;
}
case nir_instr_type_load_const: {
unsigned size = nir_instr_as_load_const(instr)->def.num_components;
if (nir_instr_as_load_const(instr)->def.bit_size == 64)
size *= 2;
allocated[nir_instr_as_load_const(instr)->def.index] = Temp(0, RegClass(RegType::sgpr, size));
break;
}
case nir_instr_type_intrinsic: {
nir_intrinsic_instr *intrinsic = nir_instr_as_intrinsic(instr);
if (!nir_intrinsic_infos[intrinsic->intrinsic].has_dest)
break;
unsigned size = intrinsic->dest.ssa.num_components;
if (intrinsic->dest.ssa.bit_size == 64)
size *= 2;
RegType type = RegType::sgpr;
switch(intrinsic->intrinsic) {
case nir_intrinsic_load_push_constant:
case nir_intrinsic_load_work_group_id:
case nir_intrinsic_load_num_work_groups:
case nir_intrinsic_load_subgroup_id:
case nir_intrinsic_load_num_subgroups:
case nir_intrinsic_load_first_vertex:
case nir_intrinsic_load_base_instance:
case nir_intrinsic_get_buffer_size:
case nir_intrinsic_vote_all:
case nir_intrinsic_vote_any:
case nir_intrinsic_read_first_invocation:
case nir_intrinsic_read_invocation:
case nir_intrinsic_first_invocation:
case nir_intrinsic_vulkan_resource_index:
type = RegType::sgpr;
break;
case nir_intrinsic_ballot:
type = RegType::sgpr;
size = 2;
break;
case nir_intrinsic_load_sample_id:
case nir_intrinsic_load_sample_mask_in:
case nir_intrinsic_load_input:
case nir_intrinsic_load_vertex_id:
case nir_intrinsic_load_vertex_id_zero_base:
case nir_intrinsic_load_barycentric_sample:
case nir_intrinsic_load_barycentric_pixel:
case nir_intrinsic_load_barycentric_centroid:
case nir_intrinsic_load_barycentric_at_sample:
case nir_intrinsic_load_barycentric_at_offset:
case nir_intrinsic_load_interpolated_input:
case nir_intrinsic_load_frag_coord:
case nir_intrinsic_load_sample_pos:
case nir_intrinsic_load_layer_id:
case nir_intrinsic_load_local_invocation_id:
case nir_intrinsic_load_local_invocation_index:
case nir_intrinsic_load_subgroup_invocation:
case nir_intrinsic_write_invocation_amd:
case nir_intrinsic_mbcnt_amd:
case nir_intrinsic_load_instance_id:
case nir_intrinsic_ssbo_atomic_add:
case nir_intrinsic_ssbo_atomic_imin:
case nir_intrinsic_ssbo_atomic_umin:
case nir_intrinsic_ssbo_atomic_imax:
case nir_intrinsic_ssbo_atomic_umax:
case nir_intrinsic_ssbo_atomic_and:
case nir_intrinsic_ssbo_atomic_or:
case nir_intrinsic_ssbo_atomic_xor:
case nir_intrinsic_ssbo_atomic_exchange:
case nir_intrinsic_ssbo_atomic_comp_swap:
case nir_intrinsic_image_deref_atomic_add:
case nir_intrinsic_image_deref_atomic_umin:
case nir_intrinsic_image_deref_atomic_imin:
case nir_intrinsic_image_deref_atomic_umax:
case nir_intrinsic_image_deref_atomic_imax:
case nir_intrinsic_image_deref_atomic_and:
case nir_intrinsic_image_deref_atomic_or:
case nir_intrinsic_image_deref_atomic_xor:
case nir_intrinsic_image_deref_atomic_exchange:
case nir_intrinsic_image_deref_atomic_comp_swap:
case nir_intrinsic_image_deref_size:
case nir_intrinsic_shared_atomic_add:
case nir_intrinsic_shared_atomic_imin:
case nir_intrinsic_shared_atomic_umin:
case nir_intrinsic_shared_atomic_imax:
case nir_intrinsic_shared_atomic_umax:
case nir_intrinsic_shared_atomic_and:
case nir_intrinsic_shared_atomic_or:
case nir_intrinsic_shared_atomic_xor:
case nir_intrinsic_shared_atomic_exchange:
case nir_intrinsic_shared_atomic_comp_swap:
case nir_intrinsic_load_scratch:
type = RegType::vgpr;
break;
case nir_intrinsic_shuffle:
case nir_intrinsic_quad_broadcast:
case nir_intrinsic_quad_swap_horizontal:
case nir_intrinsic_quad_swap_vertical:
case nir_intrinsic_quad_swap_diagonal:
case nir_intrinsic_quad_swizzle_amd:
case nir_intrinsic_masked_swizzle_amd:
case nir_intrinsic_inclusive_scan:
case nir_intrinsic_exclusive_scan:
if (!ctx->divergent_vals[intrinsic->dest.ssa.index]) {
type = RegType::sgpr;
} else if (intrinsic->src[0].ssa->bit_size == 1) {
type = RegType::sgpr;
size = 2;
} else {
type = RegType::vgpr;
}
break;
case nir_intrinsic_load_view_index:
type = ctx->stage == fragment_fs ? RegType::vgpr : RegType::sgpr;
break;
case nir_intrinsic_load_front_face:
case nir_intrinsic_load_helper_invocation:
case nir_intrinsic_is_helper_invocation:
type = RegType::sgpr;
size = 2;
break;
case nir_intrinsic_reduce:
if (nir_intrinsic_cluster_size(intrinsic) == 0 ||
!ctx->divergent_vals[intrinsic->dest.ssa.index]) {
type = RegType::sgpr;
} else if (intrinsic->src[0].ssa->bit_size == 1) {
type = RegType::sgpr;
size = 2;
} else {
type = RegType::vgpr;
}
break;
case nir_intrinsic_load_ubo:
case nir_intrinsic_load_ssbo:
case nir_intrinsic_load_global:
type = ctx->divergent_vals[intrinsic->dest.ssa.index] ? RegType::vgpr : RegType::sgpr;
break;
/* due to copy propagation, the swizzled imov is removed if num dest components == 1 */
case nir_intrinsic_load_shared:
if (ctx->divergent_vals[intrinsic->dest.ssa.index])
type = RegType::vgpr;
else
type = RegType::sgpr;
break;
default:
for (unsigned i = 0; i < nir_intrinsic_infos[intrinsic->intrinsic].num_srcs; i++) {
if (allocated[intrinsic->src[i].ssa->index].type() == RegType::vgpr)
type = RegType::vgpr;
}
break;
}
allocated[intrinsic->dest.ssa.index] = Temp(0, RegClass(type, size));
switch(intrinsic->intrinsic) {
case nir_intrinsic_load_barycentric_sample:
case nir_intrinsic_load_barycentric_pixel:
case nir_intrinsic_load_barycentric_centroid:
case nir_intrinsic_load_barycentric_at_sample:
case nir_intrinsic_load_barycentric_at_offset: {
glsl_interp_mode mode = (glsl_interp_mode)nir_intrinsic_interp_mode(intrinsic);
ctx->fs_vgpr_args[get_interp_input(intrinsic->intrinsic, mode)] = true;
break;
}
case nir_intrinsic_load_front_face:
ctx->fs_vgpr_args[fs_input::front_face] = true;
break;
case nir_intrinsic_load_frag_coord:
case nir_intrinsic_load_sample_pos: {
uint8_t mask = nir_ssa_def_components_read(&intrinsic->dest.ssa);
for (unsigned i = 0; i < 4; i++) {
if (mask & (1 << i))
ctx->fs_vgpr_args[fs_input::frag_pos_0 + i] = true;
}
break;
}
case nir_intrinsic_load_sample_id:
ctx->fs_vgpr_args[fs_input::ancillary] = true;
break;
case nir_intrinsic_load_sample_mask_in:
ctx->fs_vgpr_args[fs_input::ancillary] = true;
ctx->fs_vgpr_args[fs_input::sample_coverage] = true;
break;
default:
break;
}
break;
}
case nir_instr_type_tex: {
nir_tex_instr* tex = nir_instr_as_tex(instr);
unsigned size = tex->dest.ssa.num_components;
if (tex->dest.ssa.bit_size == 64)
size *= 2;
if (tex->op == nir_texop_texture_samples)
assert(!ctx->divergent_vals[tex->dest.ssa.index]);
if (ctx->divergent_vals[tex->dest.ssa.index])
allocated[tex->dest.ssa.index] = Temp(0, RegClass(RegType::vgpr, size));
else
allocated[tex->dest.ssa.index] = Temp(0, RegClass(RegType::sgpr, size));
break;
}
case nir_instr_type_parallel_copy: {
nir_foreach_parallel_copy_entry(entry, nir_instr_as_parallel_copy(instr)) {
allocated[entry->dest.ssa.index] = allocated[entry->src.ssa->index];
}
break;
}
case nir_instr_type_ssa_undef: {
unsigned size = nir_instr_as_ssa_undef(instr)->def.num_components;
if (nir_instr_as_ssa_undef(instr)->def.bit_size == 64)
size *= 2;
allocated[nir_instr_as_ssa_undef(instr)->def.index] = Temp(0, RegClass(RegType::sgpr, size));
break;
}
case nir_instr_type_phi: {
nir_phi_instr* phi = nir_instr_as_phi(instr);
RegType type;
unsigned size = phi->dest.ssa.num_components;
if (phi->dest.ssa.bit_size == 1) {
assert(size == 1 && "multiple components not yet supported on boolean phis.");
type = RegType::sgpr;
size *= ctx->divergent_vals[phi->dest.ssa.index] ? 2 : 1;
allocated[phi->dest.ssa.index] = Temp(0, RegClass(type, size));
break;
}
if (ctx->divergent_vals[phi->dest.ssa.index]) {
type = RegType::vgpr;
} else {
type = RegType::sgpr;
nir_foreach_phi_src (src, phi) {
if (allocated[src->src.ssa->index].type() == RegType::vgpr)
type = RegType::vgpr;
if (allocated[src->src.ssa->index].type() == RegType::none)
done = false;
}
}
size *= phi->dest.ssa.bit_size == 64 ? 2 : 1;
RegClass rc = RegClass(type, size);
if (rc != allocated[phi->dest.ssa.index].regClass()) {
done = false;
} else {
nir_foreach_phi_src(src, phi)
assert(allocated[src->src.ssa->index].size() == rc.size());
}
allocated[phi->dest.ssa.index] = Temp(0, rc);
break;
}
default:
break;
}
}
}
}
for (unsigned i = 0; i < impl->ssa_alloc; i++)
allocated[i] = Temp(ctx->program->allocateId(), allocated[i].regClass());
ctx->allocated.reset(allocated.release());
}
struct user_sgpr_info {
uint8_t num_sgpr;
uint8_t remaining_sgprs;
uint8_t user_sgpr_idx;
bool need_ring_offsets;
bool indirect_all_descriptor_sets;
};
static void allocate_inline_push_consts(isel_context *ctx,
user_sgpr_info& user_sgpr_info)
{
uint8_t remaining_sgprs = user_sgpr_info.remaining_sgprs;
/* Only supported if shaders use push constants. */
if (ctx->program->info->min_push_constant_used == UINT8_MAX)
return;
/* Only supported if shaders don't have indirect push constants. */
if (ctx->program->info->has_indirect_push_constants)
return;
/* Only supported for 32-bit push constants. */
//TODO: it's possible that some day, the load/store vectorization could make this inaccurate
if (!ctx->program->info->has_only_32bit_push_constants)
return;
uint8_t num_push_consts =
(ctx->program->info->max_push_constant_used -
ctx->program->info->min_push_constant_used) / 4;
/* Check if the number of user SGPRs is large enough. */
if (num_push_consts < remaining_sgprs) {
ctx->program->info->num_inline_push_consts = num_push_consts;
} else {
ctx->program->info->num_inline_push_consts = remaining_sgprs;
}
/* Clamp to the maximum number of allowed inlined push constants. */
if (ctx->program->info->num_inline_push_consts > MAX_INLINE_PUSH_CONSTS)
ctx->program->info->num_inline_push_consts = MAX_INLINE_PUSH_CONSTS;
if (ctx->program->info->num_inline_push_consts == num_push_consts &&
!ctx->program->info->loads_dynamic_offsets) {
/* Disable the default push constants path if all constants are
* inlined and if shaders don't use dynamic descriptors.
*/
ctx->program->info->loads_push_constants = false;
user_sgpr_info.num_sgpr--;
user_sgpr_info.remaining_sgprs++;
}
ctx->program->info->base_inline_push_consts =
ctx->program->info->min_push_constant_used / 4;
user_sgpr_info.num_sgpr += ctx->program->info->num_inline_push_consts;
user_sgpr_info.remaining_sgprs -= ctx->program->info->num_inline_push_consts;
}
static void allocate_user_sgprs(isel_context *ctx,
bool needs_view_index, user_sgpr_info& user_sgpr_info)
{
memset(&user_sgpr_info, 0, sizeof(struct user_sgpr_info));
uint32_t user_sgpr_count = 0;
/* until we sort out scratch/global buffers always assign ring offsets for gs/vs/es */
if (ctx->stage != fragment_fs &&
ctx->stage != compute_cs
/*|| ctx->is_gs_copy_shader */)
user_sgpr_info.need_ring_offsets = true;
if (ctx->stage == fragment_fs &&
ctx->program->info->ps.needs_sample_positions)
user_sgpr_info.need_ring_offsets = true;
/* 2 user sgprs will nearly always be allocated for scratch/rings */
if (ctx->options->supports_spill || user_sgpr_info.need_ring_offsets || ctx->scratch_enabled)
user_sgpr_count += 2;
switch (ctx->stage) {
case vertex_vs:
/* if (!ctx->is_gs_copy_shader) */ {
if (ctx->program->info->vs.has_vertex_buffers)
user_sgpr_count++;
user_sgpr_count += ctx->program->info->vs.needs_draw_id ? 3 : 2;
}
break;
case fragment_fs:
//user_sgpr_count += ctx->program->info->ps.needs_sample_positions;
break;
case compute_cs:
if (ctx->program->info->cs.uses_grid_size)
user_sgpr_count += 3;
break;
default:
unreachable("Shader stage not implemented");
}
if (needs_view_index)
user_sgpr_count++;
if (ctx->program->info->loads_push_constants)
user_sgpr_count += 1; /* we use 32bit pointers */
if (ctx->program->info->so.num_outputs)
user_sgpr_count += 1; /* we use 32bit pointers */
uint32_t available_sgprs = ctx->options->chip_class >= GFX9 && !(ctx->stage & hw_cs) ? 32 : 16;
uint32_t remaining_sgprs = available_sgprs - user_sgpr_count;
uint32_t num_desc_set = util_bitcount(ctx->program->info->desc_set_used_mask);
if (available_sgprs < user_sgpr_count + num_desc_set) {
user_sgpr_info.indirect_all_descriptor_sets = true;
user_sgpr_info.num_sgpr = user_sgpr_count + 1;
user_sgpr_info.remaining_sgprs = remaining_sgprs - 1;
} else {
user_sgpr_info.num_sgpr = user_sgpr_count + num_desc_set;
user_sgpr_info.remaining_sgprs = remaining_sgprs - num_desc_set;
}
allocate_inline_push_consts(ctx, user_sgpr_info);
}
#define MAX_ARGS 64
struct arg_info {
RegClass types[MAX_ARGS];
Temp *assign[MAX_ARGS];
PhysReg reg[MAX_ARGS];
unsigned array_params_mask;
uint8_t count;
uint8_t sgpr_count;
uint8_t num_sgprs_used;
uint8_t num_vgprs_used;
};
static void
add_arg(arg_info *info, RegClass rc, Temp *param_ptr, unsigned reg)
{
assert(info->count < MAX_ARGS);
info->assign[info->count] = param_ptr;
info->types[info->count] = rc;
if (rc.type() == RegType::sgpr) {
info->num_sgprs_used += rc.size();
info->sgpr_count++;
info->reg[info->count] = PhysReg{reg};
} else {
assert(rc.type() == RegType::vgpr);
info->num_vgprs_used += rc.size();
info->reg[info->count] = PhysReg{reg + 256};
}
info->count++;
}
static void
set_loc(struct radv_userdata_info *ud_info, uint8_t *sgpr_idx, uint8_t num_sgprs)
{
ud_info->sgpr_idx = *sgpr_idx;
ud_info->num_sgprs = num_sgprs;
*sgpr_idx += num_sgprs;
}
static void
set_loc_shader(isel_context *ctx, int idx, uint8_t *sgpr_idx,
uint8_t num_sgprs)
{
struct radv_userdata_info *ud_info = &ctx->program->info->user_sgprs_locs.shader_data[idx];
assert(ud_info);
set_loc(ud_info, sgpr_idx, num_sgprs);
}
static void
set_loc_shader_ptr(isel_context *ctx, int idx, uint8_t *sgpr_idx)
{
bool use_32bit_pointers = idx != AC_UD_SCRATCH_RING_OFFSETS;
set_loc_shader(ctx, idx, sgpr_idx, use_32bit_pointers ? 1 : 2);
}
static void
set_loc_desc(isel_context *ctx, int idx, uint8_t *sgpr_idx)
{
struct radv_userdata_locations *locs = &ctx->program->info->user_sgprs_locs;
struct radv_userdata_info *ud_info = &locs->descriptor_sets[idx];
assert(ud_info);
set_loc(ud_info, sgpr_idx, 1);
locs->descriptor_sets_enabled |= 1 << idx;
}
static void
declare_global_input_sgprs(isel_context *ctx,
/* bool has_previous_stage, gl_shader_stage previous_stage, */
user_sgpr_info *user_sgpr_info,
struct arg_info *args,
Temp *desc_sets)
{
/* 1 for each descriptor set */
if (!user_sgpr_info->indirect_all_descriptor_sets) {
uint32_t mask = ctx->program->info->desc_set_used_mask;
while (mask) {
int i = u_bit_scan(&mask);
add_arg(args, s1, &desc_sets[i], user_sgpr_info->user_sgpr_idx);
set_loc_desc(ctx, i, &user_sgpr_info->user_sgpr_idx);
}
/* NIR->LLVM might have set this to true if RADV_DEBUG=compiletime */
ctx->program->info->need_indirect_descriptor_sets = false;
} else {
add_arg(args, s1, desc_sets, user_sgpr_info->user_sgpr_idx);
set_loc_shader_ptr(ctx, AC_UD_INDIRECT_DESCRIPTOR_SETS, &user_sgpr_info->user_sgpr_idx);
ctx->program->info->need_indirect_descriptor_sets = true;
}
if (ctx->program->info->loads_push_constants) {
/* 1 for push constants and dynamic descriptors */
add_arg(args, s1, &ctx->push_constants, user_sgpr_info->user_sgpr_idx);
set_loc_shader_ptr(ctx, AC_UD_PUSH_CONSTANTS, &user_sgpr_info->user_sgpr_idx);
}
if (ctx->program->info->num_inline_push_consts) {
unsigned count = ctx->program->info->num_inline_push_consts;
for (unsigned i = 0; i < count; i++)
add_arg(args, s1, &ctx->inline_push_consts[i], user_sgpr_info->user_sgpr_idx + i);
set_loc_shader(ctx, AC_UD_INLINE_PUSH_CONSTANTS, &user_sgpr_info->user_sgpr_idx, count);
ctx->num_inline_push_consts = ctx->program->info->num_inline_push_consts;
ctx->base_inline_push_consts = ctx->program->info->base_inline_push_consts;
}
if (ctx->program->info->so.num_outputs) {
add_arg(args, s1, &ctx->streamout_buffers, user_sgpr_info->user_sgpr_idx);
set_loc_shader_ptr(ctx, AC_UD_STREAMOUT_BUFFERS, &user_sgpr_info->user_sgpr_idx);
}
}
static void
declare_vs_input_vgprs(isel_context *ctx, struct arg_info *args)
{
unsigned vgpr_idx = 0;
add_arg(args, v1, &ctx->vertex_id, vgpr_idx++);
/* if (!ctx->is_gs_copy_shader) */ {
if (ctx->options->key.vs.out.as_ls) {
add_arg(args, v1, &ctx->rel_auto_id, vgpr_idx++);
add_arg(args, v1, &ctx->instance_id, vgpr_idx++);
} else {
add_arg(args, v1, &ctx->instance_id, vgpr_idx++);
add_arg(args, v1, &ctx->vs_prim_id, vgpr_idx++);
}
add_arg(args, v1, NULL, vgpr_idx); /* unused */
}
}
static void
declare_streamout_sgprs(isel_context *ctx, struct arg_info *args, unsigned *idx)
{
/* Streamout SGPRs. */
if (ctx->program->info->so.num_outputs) {
assert(ctx->stage & hw_vs);
if (ctx->stage != tess_eval_vs) {
add_arg(args, s1, &ctx->streamout_config, (*idx)++);
} else {
args->assign[args->count - 1] = &ctx->streamout_config;
args->types[args->count - 1] = s1;
}
add_arg(args, s1, &ctx->streamout_write_idx, (*idx)++);
}
/* A streamout buffer offset is loaded if the stride is non-zero. */
for (unsigned i = 0; i < 4; i++) {
if (!ctx->program->info->so.strides[i])
continue;
add_arg(args, s1, &ctx->streamout_offset[i], (*idx)++);
}
}
static bool needs_view_index_sgpr(isel_context *ctx)
{
switch (ctx->stage) {
case vertex_vs:
return ctx->program->info->needs_multiview_view_index || ctx->options->key.has_multiview_view_index;
case tess_eval_vs:
return ctx->program->info->needs_multiview_view_index && ctx->options->key.has_multiview_view_index;
case vertex_ls:
case vertex_tess_control_ls:
case vertex_geometry_es:
case tess_control_hs:
case tess_eval_es:
case tess_eval_geometry_es:
case geometry_gs:
return ctx->program->info->needs_multiview_view_index;
default:
return false;
}
}
static inline bool
add_fs_arg(isel_context *ctx, arg_info *args, unsigned &vgpr_idx, fs_input input, unsigned value, bool enable_next = false, RegClass rc = v1)
{
if (!ctx->fs_vgpr_args[input])
return false;
add_arg(args, rc, &ctx->fs_inputs[input], vgpr_idx);
vgpr_idx += rc.size();
if (enable_next) {
add_arg(args, rc, &ctx->fs_inputs[input + 1], vgpr_idx);
vgpr_idx += rc.size();
}
ctx->program->config->spi_ps_input_addr |= value;
ctx->program->config->spi_ps_input_ena |= value;
return true;
}
void add_startpgm(struct isel_context *ctx)
{
user_sgpr_info user_sgpr_info;
bool needs_view_index = needs_view_index_sgpr(ctx);
allocate_user_sgprs(ctx, needs_view_index, user_sgpr_info);
arg_info args = {};
/* this needs to be in sgprs 0 and 1 */
if (ctx->options->supports_spill || user_sgpr_info.need_ring_offsets || ctx->scratch_enabled) {
add_arg(&args, s2, &ctx->private_segment_buffer, 0);
set_loc_shader_ptr(ctx, AC_UD_SCRATCH_RING_OFFSETS, &user_sgpr_info.user_sgpr_idx);
}
unsigned vgpr_idx = 0;
switch (ctx->stage) {
case vertex_vs: {
declare_global_input_sgprs(ctx, &user_sgpr_info, &args, ctx->descriptor_sets);
if (ctx->program->info->vs.has_vertex_buffers) {
add_arg(&args, s1, &ctx->vertex_buffers, user_sgpr_info.user_sgpr_idx);
set_loc_shader_ptr(ctx, AC_UD_VS_VERTEX_BUFFERS, &user_sgpr_info.user_sgpr_idx);
}
add_arg(&args, s1, &ctx->base_vertex, user_sgpr_info.user_sgpr_idx);
add_arg(&args, s1, &ctx->start_instance, user_sgpr_info.user_sgpr_idx + 1);
if (ctx->program->info->vs.needs_draw_id) {
add_arg(&args, s1, &ctx->draw_id, user_sgpr_info.user_sgpr_idx + 2);
set_loc_shader(ctx, AC_UD_VS_BASE_VERTEX_START_INSTANCE, &user_sgpr_info.user_sgpr_idx, 3);
} else
set_loc_shader(ctx, AC_UD_VS_BASE_VERTEX_START_INSTANCE, &user_sgpr_info.user_sgpr_idx, 2);
if (needs_view_index) {
add_arg(&args, s1, &ctx->view_index, user_sgpr_info.user_sgpr_idx);
set_loc_shader(ctx, AC_UD_VIEW_INDEX, &user_sgpr_info.user_sgpr_idx, 1);
}
assert(user_sgpr_info.user_sgpr_idx == user_sgpr_info.num_sgpr);
unsigned idx = user_sgpr_info.user_sgpr_idx;
if (ctx->options->key.vs.out.as_es)
add_arg(&args, s1, &ctx->es2gs_offset, idx++);
else
declare_streamout_sgprs(ctx, &args, &idx);
if (ctx->scratch_enabled)
add_arg(&args, s1, &ctx->scratch_offset, idx++);
declare_vs_input_vgprs(ctx, &args);
break;
}
case fragment_fs: {
declare_global_input_sgprs(ctx, &user_sgpr_info, &args, ctx->descriptor_sets);
assert(user_sgpr_info.user_sgpr_idx == user_sgpr_info.num_sgpr);
add_arg(&args, s1, &ctx->prim_mask, user_sgpr_info.user_sgpr_idx);
if (ctx->scratch_enabled)
add_arg(&args, s1, &ctx->scratch_offset, user_sgpr_info.user_sgpr_idx + 1);
ctx->program->config->spi_ps_input_addr = 0;
ctx->program->config->spi_ps_input_ena = 0;
bool has_interp_mode = false;
has_interp_mode |= add_fs_arg(ctx, &args, vgpr_idx, fs_input::persp_sample_p1, S_0286CC_PERSP_SAMPLE_ENA(1), true);
has_interp_mode |= add_fs_arg(ctx, &args, vgpr_idx, fs_input::persp_center_p1, S_0286CC_PERSP_CENTER_ENA(1), true);
has_interp_mode |= add_fs_arg(ctx, &args, vgpr_idx, fs_input::persp_centroid_p1, S_0286CC_PERSP_CENTROID_ENA(1), true);
has_interp_mode |= add_fs_arg(ctx, &args, vgpr_idx, fs_input::persp_pull_model, S_0286CC_PERSP_PULL_MODEL_ENA(1), false, v3);
if (!has_interp_mode && ctx->fs_vgpr_args[fs_input::frag_pos_3]) {
/* If POS_W_FLOAT (11) is enabled, at least one of PERSP_* must be enabled too */
ctx->fs_vgpr_args[fs_input::persp_center_p1] = true;
has_interp_mode = add_fs_arg(ctx, &args, vgpr_idx, fs_input::persp_center_p1, S_0286CC_PERSP_CENTER_ENA(1), true);
}
has_interp_mode |= add_fs_arg(ctx, &args, vgpr_idx, fs_input::linear_sample_p1, S_0286CC_LINEAR_SAMPLE_ENA(1), true);
has_interp_mode |= add_fs_arg(ctx, &args, vgpr_idx, fs_input::linear_center_p1, S_0286CC_LINEAR_CENTER_ENA(1), true);
has_interp_mode |= add_fs_arg(ctx, &args, vgpr_idx, fs_input::linear_centroid_p1, S_0286CC_LINEAR_CENTROID_ENA(1), true);
has_interp_mode |= add_fs_arg(ctx, &args, vgpr_idx, fs_input::line_stipple, S_0286CC_LINE_STIPPLE_TEX_ENA(1));
if (!has_interp_mode) {
/* At least one of PERSP_* (0xF) or LINEAR_* (0x70) must be enabled */
ctx->fs_vgpr_args[fs_input::persp_center_p1] = true;
has_interp_mode = add_fs_arg(ctx, &args, vgpr_idx, fs_input::persp_center_p1, S_0286CC_PERSP_CENTER_ENA(1), true);
}
add_fs_arg(ctx, &args, vgpr_idx, fs_input::frag_pos_0, S_0286CC_POS_X_FLOAT_ENA(1));
add_fs_arg(ctx, &args, vgpr_idx, fs_input::frag_pos_1, S_0286CC_POS_Y_FLOAT_ENA(1));
add_fs_arg(ctx, &args, vgpr_idx, fs_input::frag_pos_2, S_0286CC_POS_Z_FLOAT_ENA(1));
add_fs_arg(ctx, &args, vgpr_idx, fs_input::frag_pos_3, S_0286CC_POS_W_FLOAT_ENA(1));
add_fs_arg(ctx, &args, vgpr_idx, fs_input::front_face, S_0286CC_FRONT_FACE_ENA(1));
add_fs_arg(ctx, &args, vgpr_idx, fs_input::ancillary, S_0286CC_ANCILLARY_ENA(1));
add_fs_arg(ctx, &args, vgpr_idx, fs_input::sample_coverage, S_0286CC_SAMPLE_COVERAGE_ENA(1));
add_fs_arg(ctx, &args, vgpr_idx, fs_input::fixed_pt, S_0286CC_POS_FIXED_PT_ENA(1));
ASSERTED bool unset_interp_mode = !(ctx->program->config->spi_ps_input_addr & 0x7F) ||
(G_0286CC_POS_W_FLOAT_ENA(ctx->program->config->spi_ps_input_addr)
&& !(ctx->program->config->spi_ps_input_addr & 0xF));
assert(has_interp_mode);
assert(!unset_interp_mode);
break;
}
case compute_cs: {
declare_global_input_sgprs(ctx, &user_sgpr_info, &args, ctx->descriptor_sets);
if (ctx->program->info->cs.uses_grid_size) {
add_arg(&args, s1, &ctx->num_workgroups[0], user_sgpr_info.user_sgpr_idx);
add_arg(&args, s1, &ctx->num_workgroups[1], user_sgpr_info.user_sgpr_idx + 1);
add_arg(&args, s1, &ctx->num_workgroups[2], user_sgpr_info.user_sgpr_idx + 2);
set_loc_shader(ctx, AC_UD_CS_GRID_SIZE, &user_sgpr_info.user_sgpr_idx, 3);
}
assert(user_sgpr_info.user_sgpr_idx == user_sgpr_info.num_sgpr);
unsigned idx = user_sgpr_info.user_sgpr_idx;
for (unsigned i = 0; i < 3; i++) {
if (ctx->program->info->cs.uses_block_id[i])
add_arg(&args, s1, &ctx->workgroup_ids[i], idx++);
}
if (ctx->program->info->cs.uses_local_invocation_idx)
add_arg(&args, s1, &ctx->tg_size, idx++);
if (ctx->scratch_enabled)
add_arg(&args, s1, &ctx->scratch_offset, idx++);
add_arg(&args, v1, &ctx->local_invocation_ids[0], vgpr_idx++);
add_arg(&args, v1, &ctx->local_invocation_ids[1], vgpr_idx++);
add_arg(&args, v1, &ctx->local_invocation_ids[2], vgpr_idx++);
break;
}
default:
unreachable("Shader stage not implemented");
}
ctx->program->info->num_input_vgprs = 0;
ctx->program->info->num_input_sgprs = args.num_sgprs_used;
ctx->program->info->num_user_sgprs = user_sgpr_info.num_sgpr;
ctx->program->info->num_input_vgprs = args.num_vgprs_used;
aco_ptr<Pseudo_instruction> startpgm{create_instruction<Pseudo_instruction>(aco_opcode::p_startpgm, Format::PSEUDO, 0, args.count + 1)};
for (unsigned i = 0; i < args.count; i++) {
if (args.assign[i]) {
*args.assign[i] = Temp{ctx->program->allocateId(), args.types[i]};
startpgm->definitions[i] = Definition(*args.assign[i]);
startpgm->definitions[i].setFixed(args.reg[i]);
}
}
startpgm->definitions[args.count] = Definition{ctx->program->allocateId(), exec, s2};
ctx->block->instructions.push_back(std::move(startpgm));
}
int
type_size(const struct glsl_type *type, bool bindless)
{
// TODO: don't we need type->std430_base_alignment() here?
return glsl_count_attribute_slots(type, false);
}
void
shared_var_info(const struct glsl_type *type, unsigned *size, unsigned *align)
{
assert(glsl_type_is_vector_or_scalar(type));
uint32_t comp_size = glsl_type_is_boolean(type)
? 4 : glsl_get_bit_size(type) / 8;
unsigned length = glsl_get_vector_elements(type);
*size = comp_size * length,
*align = comp_size;
}
int
get_align(nir_variable_mode mode, bool is_store, unsigned bit_size, unsigned num_components)
{
/* TODO: ACO doesn't have good support for non-32-bit reads/writes yet */
if (bit_size != 32)
return -1;
switch (mode) {
case nir_var_mem_ubo:
case nir_var_mem_ssbo:
//case nir_var_mem_push_const: enable with 1240!
case nir_var_mem_shared:
/* TODO: what are the alignment requirements for LDS? */
return num_components <= 4 ? 4 : -1;
default:
return -1;
}
}
void
setup_vs_variables(isel_context *ctx, nir_shader *nir)
{
nir_foreach_variable(variable, &nir->inputs)
{
variable->data.driver_location = variable->data.location * 4;
}
nir_foreach_variable(variable, &nir->outputs)
{
variable->data.driver_location = variable->data.location * 4;
}
radv_vs_output_info *outinfo = &ctx->program->info->vs.outinfo;
memset(outinfo->vs_output_param_offset, AC_EXP_PARAM_UNDEFINED,
sizeof(outinfo->vs_output_param_offset));
ctx->needs_instance_id = ctx->program->info->vs.needs_instance_id;
bool export_clip_dists = ctx->options->key.vs_common_out.export_clip_dists;
outinfo->param_exports = 0;
int pos_written = 0x1;
if (outinfo->writes_pointsize || outinfo->writes_viewport_index || outinfo->writes_layer)
pos_written |= 1 << 1;
nir_foreach_variable(variable, &nir->outputs)
{
int idx = variable->data.location;
unsigned slots = variable->type->count_attribute_slots(false);
if (variable->data.compact) {
unsigned component_count = variable->data.location_frac + variable->type->length;
slots = (component_count + 3) / 4;
}
if (idx >= VARYING_SLOT_VAR0 || idx == VARYING_SLOT_LAYER || idx == VARYING_SLOT_PRIMITIVE_ID ||
((idx == VARYING_SLOT_CLIP_DIST0 || idx == VARYING_SLOT_CLIP_DIST1) && export_clip_dists)) {
for (unsigned i = 0; i < slots; i++) {
if (outinfo->vs_output_param_offset[idx + i] == AC_EXP_PARAM_UNDEFINED)
outinfo->vs_output_param_offset[idx + i] = outinfo->param_exports++;
}
}
}
if (outinfo->writes_layer &&
outinfo->vs_output_param_offset[VARYING_SLOT_LAYER] == AC_EXP_PARAM_UNDEFINED) {
/* when ctx->options->key.has_multiview_view_index = true, the layer
* variable isn't declared in NIR and it's isel's job to get the layer */
outinfo->vs_output_param_offset[VARYING_SLOT_LAYER] = outinfo->param_exports++;
}
if (outinfo->export_prim_id) {
assert(outinfo->vs_output_param_offset[VARYING_SLOT_PRIMITIVE_ID] == AC_EXP_PARAM_UNDEFINED);
outinfo->vs_output_param_offset[VARYING_SLOT_PRIMITIVE_ID] = outinfo->param_exports++;
}
ctx->num_clip_distances = util_bitcount(outinfo->clip_dist_mask);
ctx->num_cull_distances = util_bitcount(outinfo->cull_dist_mask);
assert(ctx->num_clip_distances + ctx->num_cull_distances <= 8);
if (ctx->num_clip_distances + ctx->num_cull_distances > 0)
pos_written |= 1 << 2;
if (ctx->num_clip_distances + ctx->num_cull_distances > 4)
pos_written |= 1 << 3;
outinfo->pos_exports = util_bitcount(pos_written);
}
void
setup_variables(isel_context *ctx, nir_shader *nir)
{
switch (nir->info.stage) {
case MESA_SHADER_FRAGMENT: {
nir_foreach_variable(variable, &nir->outputs)
{
int idx = variable->data.location + variable->data.index;
variable->data.driver_location = idx * 4;
}
break;
}
case MESA_SHADER_COMPUTE: {
unsigned lds_allocation_size_unit = 4 * 64;
if (ctx->program->chip_class >= GFX7)
lds_allocation_size_unit = 4 * 128;
ctx->program->config->lds_size = (nir->info.cs.shared_size + lds_allocation_size_unit - 1) / lds_allocation_size_unit;
break;
}
case MESA_SHADER_VERTEX: {
setup_vs_variables(ctx, nir);
break;
}
default:
unreachable("Unhandled shader stage.");
}
}
isel_context
setup_isel_context(Program* program,
unsigned shader_count,
struct nir_shader *const *shaders,
ac_shader_config* config,
radv_shader_info *info,
radv_nir_compiler_options *options)
{
program->stage = 0;
for (unsigned i = 0; i < shader_count; i++) {
switch (shaders[i]->info.stage) {
case MESA_SHADER_VERTEX:
program->stage |= sw_vs;
break;
case MESA_SHADER_TESS_CTRL:
program->stage |= sw_tcs;
break;
case MESA_SHADER_TESS_EVAL:
program->stage |= sw_tes;
break;
case MESA_SHADER_GEOMETRY:
program->stage |= sw_gs;
break;
case MESA_SHADER_FRAGMENT:
program->stage |= sw_fs;
break;
case MESA_SHADER_COMPUTE:
program->stage |= sw_cs;
break;
default:
unreachable("Shader stage not implemented");
}
}
if (program->stage == sw_vs)
program->stage |= hw_vs;
else if (program->stage == sw_fs)
program->stage |= hw_fs;
else if (program->stage == sw_cs)
program->stage |= hw_cs;
else
unreachable("Shader stage not implemented");
program->config = config;
program->info = info;
program->chip_class = options->chip_class;
program->family = options->family;
program->sgpr_limit = options->chip_class >= GFX8 ? 102 : 104;
if (options->family == CHIP_TONGA || options->family == CHIP_ICELAND)
program->sgpr_limit = 94; /* workaround hardware bug */
for (unsigned i = 0; i < MAX_SETS; ++i)
program->info->user_sgprs_locs.descriptor_sets[i].sgpr_idx = -1;
for (unsigned i = 0; i < AC_UD_MAX_UD; ++i)
program->info->user_sgprs_locs.shader_data[i].sgpr_idx = -1;
isel_context ctx = {};
ctx.program = program;
ctx.options = options;
ctx.stage = program->stage;
for (unsigned i = 0; i < fs_input::max_inputs; ++i)
ctx.fs_inputs[i] = Temp(0, v1);
ctx.fs_inputs[fs_input::persp_pull_model] = Temp(0, v3);
for (unsigned i = 0; i < MAX_SETS; ++i)
ctx.descriptor_sets[i] = Temp(0, s1);
for (unsigned i = 0; i < MAX_INLINE_PUSH_CONSTS; ++i)
ctx.inline_push_consts[i] = Temp(0, s1);
for (unsigned i = 0; i <= VARYING_SLOT_VAR31; ++i) {
for (unsigned j = 0; j < 4; ++j)
ctx.vs_output.outputs[i][j] = Temp(0, v1);
}
for (unsigned i = 0; i < shader_count; i++) {
nir_shader *nir = shaders[i];
/* align and copy constant data */
while (program->constant_data.size() % 4u)
program->constant_data.push_back(0);
ctx.constant_data_offset = program->constant_data.size();
program->constant_data.insert(program->constant_data.end(),
(uint8_t*)nir->constant_data,
(uint8_t*)nir->constant_data + nir->constant_data_size);
/* the variable setup has to be done before lower_io / CSE */
if (nir->info.stage == MESA_SHADER_COMPUTE)
nir_lower_vars_to_explicit_types(nir, nir_var_mem_shared, shared_var_info);
setup_variables(&ctx, nir);
/* optimize and lower memory operations */
bool lower_to_scalar = false;
bool lower_pack = false;
// TODO: uncomment this once !1240 is merged
/*if (nir_opt_load_store_vectorize(nir,
(nir_variable_mode)(nir_var_mem_ssbo | nir_var_mem_ubo |
nir_var_mem_push_const | nir_var_mem_shared),
get_align)) {
lower_to_scalar = true;
lower_pack = true;
}*/
if (nir->info.stage == MESA_SHADER_COMPUTE)
lower_to_scalar |= nir_lower_explicit_io(nir, nir_var_mem_shared, nir_address_format_32bit_offset);
else
nir_lower_io(nir, (nir_variable_mode)(nir_var_shader_in | nir_var_shader_out), type_size, (nir_lower_io_options)0);
nir_lower_explicit_io(nir, nir_var_mem_global, nir_address_format_64bit_global);
if (lower_to_scalar)
nir_lower_alu_to_scalar(nir, NULL, NULL);
if (lower_pack)
nir_lower_pack(nir);
/* lower ALU operations */
// TODO: implement logic64 in aco, it's more effective for sgprs
nir_lower_int64(nir, (nir_lower_int64_options) (nir_lower_imul64 |
nir_lower_imul_high64 |
nir_lower_imul_2x32_64 |
nir_lower_divmod64 |
nir_lower_logic64 |
nir_lower_minmax64 |
nir_lower_iabs64));
nir_opt_idiv_const(nir, 32);
nir_lower_idiv(nir); // TODO: use the LLVM path once !1239 is merged
/* optimize the lowered ALU operations */
nir_copy_prop(nir);
nir_opt_constant_folding(nir);
nir_opt_algebraic(nir);
nir_opt_algebraic_late(nir);
nir_opt_constant_folding(nir);
/* cleanup passes */
nir_lower_load_const_to_scalar(nir);
nir_opt_cse(nir);
nir_opt_dce(nir);
nir_opt_shrink_load(nir);
nir_move_options move_opts = (nir_move_options)(
nir_move_const_undef | nir_move_load_ubo | nir_move_load_input | nir_move_comparisons);
//nir_opt_sink(nir, move_opts); // TODO: enable this once !1664 is merged
nir_opt_move(nir, move_opts);
nir_convert_to_lcssa(nir, true, false);
nir_lower_phis_to_scalar(nir);
nir_function_impl *func = nir_shader_get_entrypoint(nir);
nir_index_ssa_defs(func);
if (options->dump_preoptir) {
fprintf(stderr, "NIR shader before instruction selection:\n");
nir_print_shader(nir, stderr);
}
}
unsigned scratch_size = 0;
for (unsigned i = 0; i < shader_count; i++)
scratch_size = std::max(scratch_size, shaders[i]->scratch_size);
ctx.scratch_enabled = scratch_size > 0;
ctx.program->config->scratch_bytes_per_wave = align(scratch_size * ctx.options->wave_size, 1024);
ctx.program->config->float_mode = V_00B028_FP_64_DENORMS;
ctx.program->info->wave_size = ctx.options->wave_size;
ctx.block = ctx.program->create_and_insert_block();
ctx.block->loop_nest_depth = 0;
ctx.block->kind = block_kind_top_level;
return ctx;
}
}