mesa/src/compiler/nir/tests/negative_equal_tests.cpp

362 lines
11 KiB
C++
Raw Normal View History

/*
* Copyright © 2018 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#include <gtest/gtest.h>
#include "nir.h"
#include "nir_builder.h"
#include "util/half_float.h"
static void count_sequence(nir_const_value c[NIR_MAX_VEC_COMPONENTS],
nir_alu_type base_type, unsigned bits, int first);
static void negate(nir_const_value dst[NIR_MAX_VEC_COMPONENTS],
const nir_const_value src[NIR_MAX_VEC_COMPONENTS],
nir_alu_type base_type, unsigned bits, unsigned components);
class const_value_negative_equal_test : public ::testing::Test {
protected:
const_value_negative_equal_test()
{
memset(c1, 0, sizeof(c1));
memset(c2, 0, sizeof(c2));
}
~const_value_negative_equal_test()
{
/* empty */
}
nir_const_value c1[NIR_MAX_VEC_COMPONENTS];
nir_const_value c2[NIR_MAX_VEC_COMPONENTS];
};
class alu_srcs_negative_equal_test : public ::testing::Test {
protected:
alu_srcs_negative_equal_test()
{
static const nir_shader_compiler_options options = { };
nir_builder_init_simple_shader(&bld, NULL, MESA_SHADER_VERTEX, &options);
}
~alu_srcs_negative_equal_test()
{
ralloc_free(bld.shader);
}
struct nir_builder bld;
};
TEST_F(const_value_negative_equal_test, float32_zero)
{
/* Verify that 0.0 negative-equals 0.0. */
EXPECT_TRUE(nir_const_value_negative_equal(c1, c1, NIR_MAX_VEC_COMPONENTS,
nir_type_float, 32));
}
TEST_F(const_value_negative_equal_test, float64_zero)
{
/* Verify that 0.0 negative-equals 0.0. */
EXPECT_TRUE(nir_const_value_negative_equal(c1, c1, NIR_MAX_VEC_COMPONENTS,
nir_type_float, 64));
}
/* Compare an object with non-zero values to itself. This should always be
* false.
*/
#define compare_with_self(base_type, bits) \
TEST_F(const_value_negative_equal_test, base_type ## bits ## _self) \
{ \
count_sequence(c1, base_type, bits, 1); \
EXPECT_FALSE(nir_const_value_negative_equal(c1, c1, \
NIR_MAX_VEC_COMPONENTS, \
base_type, bits)); \
}
compare_with_self(nir_type_float, 16)
compare_with_self(nir_type_float, 32)
compare_with_self(nir_type_float, 64)
compare_with_self(nir_type_int, 8)
compare_with_self(nir_type_uint, 8)
compare_with_self(nir_type_int, 16)
compare_with_self(nir_type_uint, 16)
compare_with_self(nir_type_int, 32)
compare_with_self(nir_type_uint, 32)
compare_with_self(nir_type_int, 64)
compare_with_self(nir_type_uint, 64)
/* Compare an object with the negation of itself. This should always be true.
*/
#define compare_with_negation(base_type, bits) \
TEST_F(const_value_negative_equal_test, base_type ## bits ## _trivially_true) \
{ \
count_sequence(c1, base_type, bits, 1); \
negate(c2, c1, base_type, bits, NIR_MAX_VEC_COMPONENTS); \
EXPECT_TRUE(nir_const_value_negative_equal(c1, c2, \
NIR_MAX_VEC_COMPONENTS, \
base_type, bits)); \
}
compare_with_negation(nir_type_float, 16)
compare_with_negation(nir_type_float, 32)
compare_with_negation(nir_type_float, 64)
compare_with_negation(nir_type_int, 8)
compare_with_negation(nir_type_uint, 8)
compare_with_negation(nir_type_int, 16)
compare_with_negation(nir_type_uint, 16)
compare_with_negation(nir_type_int, 32)
compare_with_negation(nir_type_uint, 32)
compare_with_negation(nir_type_int, 64)
compare_with_negation(nir_type_uint, 64)
/* Compare fewer than the maximum possible components. All of the components
* that are compared a negative-equal, but the extra components are not.
*/
#define compare_fewer_components(base_type, bits) \
TEST_F(const_value_negative_equal_test, base_type ## bits ## _fewer_components) \
{ \
count_sequence(c1, base_type, bits, 1); \
negate(c2, c1, base_type, bits, 3); \
EXPECT_TRUE(nir_const_value_negative_equal(c1, c2, 3, base_type, bits)); \
EXPECT_FALSE(nir_const_value_negative_equal(c1, c2, \
NIR_MAX_VEC_COMPONENTS, \
base_type, bits)); \
}
compare_fewer_components(nir_type_float, 16)
compare_fewer_components(nir_type_float, 32)
compare_fewer_components(nir_type_float, 64)
compare_fewer_components(nir_type_int, 8)
compare_fewer_components(nir_type_uint, 8)
compare_fewer_components(nir_type_int, 16)
compare_fewer_components(nir_type_uint, 16)
compare_fewer_components(nir_type_int, 32)
compare_fewer_components(nir_type_uint, 32)
compare_fewer_components(nir_type_int, 64)
compare_fewer_components(nir_type_uint, 64)
TEST_F(alu_srcs_negative_equal_test, trivial_float)
{
nir_ssa_def *two = nir_imm_float(&bld, 2.0f);
nir_ssa_def *negative_two = nir_imm_float(&bld, -2.0f);
nir_ssa_def *result = nir_fadd(&bld, two, negative_two);
nir_alu_instr *instr = nir_instr_as_alu(result->parent_instr);
ASSERT_NE((void *) 0, instr);
EXPECT_TRUE(nir_alu_srcs_negative_equal(instr, instr, 0, 1));
EXPECT_FALSE(nir_alu_srcs_negative_equal(instr, instr, 0, 0));
EXPECT_FALSE(nir_alu_srcs_negative_equal(instr, instr, 1, 1));
}
TEST_F(alu_srcs_negative_equal_test, trivial_int)
{
nir_ssa_def *two = nir_imm_int(&bld, 2);
nir_ssa_def *negative_two = nir_imm_int(&bld, -2);
nir_ssa_def *result = nir_iadd(&bld, two, negative_two);
nir_alu_instr *instr = nir_instr_as_alu(result->parent_instr);
ASSERT_NE((void *) 0, instr);
EXPECT_TRUE(nir_alu_srcs_negative_equal(instr, instr, 0, 1));
EXPECT_FALSE(nir_alu_srcs_negative_equal(instr, instr, 0, 0));
EXPECT_FALSE(nir_alu_srcs_negative_equal(instr, instr, 1, 1));
}
TEST_F(alu_srcs_negative_equal_test, trivial_negation_float)
{
/* Cannot just do the negation of a nir_load_const_instr because
* nir_alu_srcs_negative_equal expects that constant folding will convert
* fneg(2.0) to just -2.0.
*/
nir_ssa_def *two = nir_imm_float(&bld, 2.0f);
nir_ssa_def *two_plus_two = nir_fadd(&bld, two, two);
nir_ssa_def *negation = nir_fneg(&bld, two_plus_two);
nir_ssa_def *result = nir_fadd(&bld, two_plus_two, negation);
nir_alu_instr *instr = nir_instr_as_alu(result->parent_instr);
ASSERT_NE((void *) 0, instr);
EXPECT_TRUE(nir_alu_srcs_negative_equal(instr, instr, 0, 1));
EXPECT_FALSE(nir_alu_srcs_negative_equal(instr, instr, 0, 0));
EXPECT_FALSE(nir_alu_srcs_negative_equal(instr, instr, 1, 1));
}
TEST_F(alu_srcs_negative_equal_test, trivial_negation_int)
{
/* Cannot just do the negation of a nir_load_const_instr because
* nir_alu_srcs_negative_equal expects that constant folding will convert
* ineg(2) to just -2.
*/
nir_ssa_def *two = nir_imm_int(&bld, 2);
nir_ssa_def *two_plus_two = nir_iadd(&bld, two, two);
nir_ssa_def *negation = nir_ineg(&bld, two_plus_two);
nir_ssa_def *result = nir_iadd(&bld, two_plus_two, negation);
nir_alu_instr *instr = nir_instr_as_alu(result->parent_instr);
ASSERT_NE((void *) 0, instr);
EXPECT_TRUE(nir_alu_srcs_negative_equal(instr, instr, 0, 1));
EXPECT_FALSE(nir_alu_srcs_negative_equal(instr, instr, 0, 0));
EXPECT_FALSE(nir_alu_srcs_negative_equal(instr, instr, 1, 1));
}
static void
count_sequence(nir_const_value c[NIR_MAX_VEC_COMPONENTS], nir_alu_type base_type, unsigned bits, int first)
{
switch (base_type) {
case nir_type_float:
switch (bits) {
case 16:
for (unsigned i = 0; i < NIR_MAX_VEC_COMPONENTS; i++)
c[i].u16 = _mesa_float_to_half(float(i + first));
break;
case 32:
for (unsigned i = 0; i < NIR_MAX_VEC_COMPONENTS; i++)
c[i].f32 = float(i + first);
break;
case 64:
for (unsigned i = 0; i < NIR_MAX_VEC_COMPONENTS; i++)
c[i].f64 = double(i + first);
break;
default:
unreachable("unknown bit size");
}
break;
case nir_type_int:
case nir_type_uint:
switch (bits) {
case 8:
for (unsigned i = 0; i < NIR_MAX_VEC_COMPONENTS; i++)
c[i].i8 = i + first;
break;
case 16:
for (unsigned i = 0; i < NIR_MAX_VEC_COMPONENTS; i++)
c[i].i16 = i + first;
break;
case 32:
for (unsigned i = 0; i < NIR_MAX_VEC_COMPONENTS; i++)
c[i].i32 = i + first;
break;
case 64:
for (unsigned i = 0; i < NIR_MAX_VEC_COMPONENTS; i++)
c[i].i64 = i + first;
break;
default:
unreachable("unknown bit size");
}
break;
case nir_type_bool:
default:
unreachable("invalid base type");
}
}
static void
negate(nir_const_value dst[NIR_MAX_VEC_COMPONENTS],
const nir_const_value src[NIR_MAX_VEC_COMPONENTS],
nir_alu_type base_type, unsigned bits, unsigned components)
{
switch (base_type) {
case nir_type_float:
switch (bits) {
case 16:
for (unsigned i = 0; i < components; i++)
dst[i].u16 = _mesa_float_to_half(-_mesa_half_to_float(src[i].u16));
break;
case 32:
for (unsigned i = 0; i < components; i++)
dst[i].f32 = -src[i].f32;
break;
case 64:
for (unsigned i = 0; i < components; i++)
dst[i].f64 = -src[i].f64;
break;
default:
unreachable("unknown bit size");
}
break;
case nir_type_int:
case nir_type_uint:
switch (bits) {
case 8:
for (unsigned i = 0; i < components; i++)
dst[i].i8 = -src[i].i8;
break;
case 16:
for (unsigned i = 0; i < components; i++)
dst[i].i16 = -src[i].i16;
break;
case 32:
for (unsigned i = 0; i < components; i++)
dst[i].i32 = -src[i].i32;
break;
case 64:
for (unsigned i = 0; i < components; i++)
dst[i].i64 = -src[i].i64;
break;
default:
unreachable("unknown bit size");
}
break;
case nir_type_bool:
default:
unreachable("invalid base type");
}
}