mesa-drm/linux-core/drm_bo_move.c
Thomas Hellstrom c9b73ef6da Unlock the BO mutex while waiting for idle, unmapped, unfenced.
Move unfenced checking into idle checking.
Never time out while waiting for software events like unmapped or unfenced.
2008-04-14 12:13:33 +02:00

630 lines
16 KiB
C

/**************************************************************************
*
* Copyright (c) 2007 Tungsten Graphics, Inc., Cedar Park, TX., USA
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sub license, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial portions
* of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
* OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
* USE OR OTHER DEALINGS IN THE SOFTWARE.
*
**************************************************************************/
/*
* Authors: Thomas Hellström <thomas-at-tungstengraphics-dot-com>
*/
#include "drmP.h"
/**
* Free the old memory node unless it's a pinned region and we
* have not been requested to free also pinned regions.
*/
static void drm_bo_free_old_node(struct drm_buffer_object *bo)
{
struct drm_bo_mem_reg *old_mem = &bo->mem;
if (old_mem->mm_node && (old_mem->mm_node != bo->pinned_node)) {
mutex_lock(&bo->dev->struct_mutex);
drm_mm_put_block(old_mem->mm_node);
mutex_unlock(&bo->dev->struct_mutex);
}
old_mem->mm_node = NULL;
}
int drm_bo_move_ttm(struct drm_buffer_object *bo,
int evict, int no_wait, struct drm_bo_mem_reg *new_mem)
{
struct drm_ttm *ttm = bo->ttm;
struct drm_bo_mem_reg *old_mem = &bo->mem;
uint64_t save_flags = old_mem->flags;
uint64_t save_proposed_flags = old_mem->proposed_flags;
int ret;
if (old_mem->mem_type != DRM_BO_MEM_LOCAL) {
if (evict)
drm_ttm_evict(ttm);
else
drm_ttm_unbind(ttm);
drm_bo_free_old_node(bo);
DRM_FLAG_MASKED(old_mem->flags,
DRM_BO_FLAG_CACHED | DRM_BO_FLAG_MAPPABLE |
DRM_BO_FLAG_MEM_LOCAL, DRM_BO_MASK_MEMTYPE);
old_mem->mem_type = DRM_BO_MEM_LOCAL;
save_flags = old_mem->flags;
}
if (new_mem->mem_type != DRM_BO_MEM_LOCAL) {
ret = drm_ttm_bind(ttm, new_mem);
if (ret)
return ret;
}
*old_mem = *new_mem;
new_mem->mm_node = NULL;
old_mem->proposed_flags = save_proposed_flags;
DRM_FLAG_MASKED(save_flags, new_mem->flags, DRM_BO_MASK_MEMTYPE);
return 0;
}
EXPORT_SYMBOL(drm_bo_move_ttm);
/**
* \c Return a kernel virtual address to the buffer object PCI memory.
*
* \param bo The buffer object.
* \return Failure indication.
*
* Returns -EINVAL if the buffer object is currently not mappable.
* Returns -ENOMEM if the ioremap operation failed.
* Otherwise returns zero.
*
* After a successfull call, bo->iomap contains the virtual address, or NULL
* if the buffer object content is not accessible through PCI space.
* Call bo->mutex locked.
*/
int drm_mem_reg_ioremap(struct drm_device *dev, struct drm_bo_mem_reg *mem,
void **virtual)
{
struct drm_buffer_manager *bm = &dev->bm;
struct drm_mem_type_manager *man = &bm->man[mem->mem_type];
unsigned long bus_offset;
unsigned long bus_size;
unsigned long bus_base;
int ret;
void *addr;
*virtual = NULL;
ret = drm_bo_pci_offset(dev, mem, &bus_base, &bus_offset, &bus_size);
if (ret || bus_size == 0)
return ret;
if (!(man->flags & _DRM_FLAG_NEEDS_IOREMAP))
addr = (void *)(((u8 *) man->io_addr) + bus_offset);
else {
addr = ioremap_nocache(bus_base + bus_offset, bus_size);
if (!addr)
return -ENOMEM;
}
*virtual = addr;
return 0;
}
EXPORT_SYMBOL(drm_mem_reg_ioremap);
/**
* \c Unmap mapping obtained using drm_bo_ioremap
*
* \param bo The buffer object.
*
* Call bo->mutex locked.
*/
void drm_mem_reg_iounmap(struct drm_device *dev, struct drm_bo_mem_reg *mem,
void *virtual)
{
struct drm_buffer_manager *bm;
struct drm_mem_type_manager *man;
bm = &dev->bm;
man = &bm->man[mem->mem_type];
if (virtual && (man->flags & _DRM_FLAG_NEEDS_IOREMAP))
iounmap(virtual);
}
static int drm_copy_io_page(void *dst, void *src, unsigned long page)
{
uint32_t *dstP =
(uint32_t *) ((unsigned long)dst + (page << PAGE_SHIFT));
uint32_t *srcP =
(uint32_t *) ((unsigned long)src + (page << PAGE_SHIFT));
int i;
for (i = 0; i < PAGE_SIZE / sizeof(uint32_t); ++i)
iowrite32(ioread32(srcP++), dstP++);
return 0;
}
static int drm_copy_io_ttm_page(struct drm_ttm *ttm, void *src,
unsigned long page)
{
struct page *d = drm_ttm_get_page(ttm, page);
void *dst;
if (!d)
return -ENOMEM;
src = (void *)((unsigned long)src + (page << PAGE_SHIFT));
dst = kmap(d);
if (!dst)
return -ENOMEM;
memcpy_fromio(dst, src, PAGE_SIZE);
kunmap(d);
return 0;
}
static int drm_copy_ttm_io_page(struct drm_ttm *ttm, void *dst, unsigned long page)
{
struct page *s = drm_ttm_get_page(ttm, page);
void *src;
if (!s)
return -ENOMEM;
dst = (void *)((unsigned long)dst + (page << PAGE_SHIFT));
src = kmap(s);
if (!src)
return -ENOMEM;
memcpy_toio(dst, src, PAGE_SIZE);
kunmap(s);
return 0;
}
int drm_bo_move_memcpy(struct drm_buffer_object *bo,
int evict, int no_wait, struct drm_bo_mem_reg *new_mem)
{
struct drm_device *dev = bo->dev;
struct drm_mem_type_manager *man = &dev->bm.man[new_mem->mem_type];
struct drm_ttm *ttm = bo->ttm;
struct drm_bo_mem_reg *old_mem = &bo->mem;
struct drm_bo_mem_reg old_copy = *old_mem;
void *old_iomap;
void *new_iomap;
int ret;
uint64_t save_flags = old_mem->flags;
uint64_t save_proposed_flags = old_mem->proposed_flags;
unsigned long i;
unsigned long page;
unsigned long add = 0;
int dir;
ret = drm_mem_reg_ioremap(dev, old_mem, &old_iomap);
if (ret)
return ret;
ret = drm_mem_reg_ioremap(dev, new_mem, &new_iomap);
if (ret)
goto out;
if (old_iomap == NULL && new_iomap == NULL)
goto out2;
if (old_iomap == NULL && ttm == NULL)
goto out2;
add = 0;
dir = 1;
if ((old_mem->mem_type == new_mem->mem_type) &&
(new_mem->mm_node->start <
old_mem->mm_node->start + old_mem->mm_node->size)) {
dir = -1;
add = new_mem->num_pages - 1;
}
for (i = 0; i < new_mem->num_pages; ++i) {
page = i * dir + add;
if (old_iomap == NULL)
ret = drm_copy_ttm_io_page(ttm, new_iomap, page);
else if (new_iomap == NULL)
ret = drm_copy_io_ttm_page(ttm, old_iomap, page);
else
ret = drm_copy_io_page(new_iomap, old_iomap, page);
if (ret)
goto out1;
}
mb();
out2:
drm_bo_free_old_node(bo);
*old_mem = *new_mem;
new_mem->mm_node = NULL;
old_mem->proposed_flags = save_proposed_flags;
DRM_FLAG_MASKED(save_flags, new_mem->flags, DRM_BO_MASK_MEMTYPE);
if ((man->flags & _DRM_FLAG_MEMTYPE_FIXED) && (ttm != NULL)) {
drm_ttm_unbind(ttm);
drm_ttm_destroy(ttm);
bo->ttm = NULL;
}
out1:
drm_mem_reg_iounmap(dev, new_mem, new_iomap);
out:
drm_mem_reg_iounmap(dev, &old_copy, old_iomap);
return ret;
}
EXPORT_SYMBOL(drm_bo_move_memcpy);
/*
* Transfer a buffer object's memory and LRU status to a newly
* created object. User-space references remains with the old
* object. Call bo->mutex locked.
*/
int drm_buffer_object_transfer(struct drm_buffer_object *bo,
struct drm_buffer_object **new_obj)
{
struct drm_buffer_object *fbo;
struct drm_device *dev = bo->dev;
struct drm_buffer_manager *bm = &dev->bm;
fbo = drm_ctl_calloc(1, sizeof(*fbo), DRM_MEM_BUFOBJ);
if (!fbo)
return -ENOMEM;
*fbo = *bo;
mutex_init(&fbo->mutex);
mutex_lock(&fbo->mutex);
mutex_lock(&dev->struct_mutex);
DRM_INIT_WAITQUEUE(&bo->event_queue);
INIT_LIST_HEAD(&fbo->ddestroy);
INIT_LIST_HEAD(&fbo->lru);
INIT_LIST_HEAD(&fbo->pinned_lru);
#ifdef DRM_ODD_MM_COMPAT
INIT_LIST_HEAD(&fbo->vma_list);
INIT_LIST_HEAD(&fbo->p_mm_list);
#endif
fbo->fence = drm_fence_reference_locked(bo->fence);
fbo->pinned_node = NULL;
fbo->mem.mm_node->private = (void *)fbo;
atomic_set(&fbo->usage, 1);
atomic_inc(&bm->count);
mutex_unlock(&dev->struct_mutex);
mutex_unlock(&fbo->mutex);
*new_obj = fbo;
return 0;
}
/*
* Since move is underway, we need to block signals in this function.
* We cannot restart until it has finished.
*/
int drm_bo_move_accel_cleanup(struct drm_buffer_object *bo,
int evict, int no_wait, uint32_t fence_class,
uint32_t fence_type, uint32_t fence_flags,
struct drm_bo_mem_reg *new_mem)
{
struct drm_device *dev = bo->dev;
struct drm_mem_type_manager *man = &dev->bm.man[new_mem->mem_type];
struct drm_bo_mem_reg *old_mem = &bo->mem;
int ret;
uint64_t save_flags = old_mem->flags;
uint64_t save_proposed_flags = old_mem->proposed_flags;
struct drm_buffer_object *old_obj;
if (bo->fence)
drm_fence_usage_deref_unlocked(&bo->fence);
ret = drm_fence_object_create(dev, fence_class, fence_type,
fence_flags | DRM_FENCE_FLAG_EMIT,
&bo->fence);
bo->fence_type = fence_type;
if (ret)
return ret;
#ifdef DRM_ODD_MM_COMPAT
/*
* In this mode, we don't allow pipelining a copy blit,
* since the buffer will be accessible from user space
* the moment we return and rebuild the page tables.
*
* With normal vm operation, page tables are rebuilt
* on demand using fault(), which waits for buffer idle.
*/
if (1)
#else
if (evict || ((bo->mem.mm_node == bo->pinned_node) &&
bo->mem.mm_node != NULL))
#endif
{
if (bo->fence) {
(void) drm_fence_object_wait(bo->fence, 0, 1,
bo->fence_type);
drm_fence_usage_deref_unlocked(&bo->fence);
}
drm_bo_free_old_node(bo);
if ((man->flags & _DRM_FLAG_MEMTYPE_FIXED) && (bo->ttm != NULL)) {
drm_ttm_unbind(bo->ttm);
drm_ttm_destroy(bo->ttm);
bo->ttm = NULL;
}
} else {
/* This should help pipeline ordinary buffer moves.
*
* Hang old buffer memory on a new buffer object,
* and leave it to be released when the GPU
* operation has completed.
*/
ret = drm_buffer_object_transfer(bo, &old_obj);
if (ret)
return ret;
if (!(man->flags & _DRM_FLAG_MEMTYPE_FIXED))
old_obj->ttm = NULL;
else
bo->ttm = NULL;
mutex_lock(&dev->struct_mutex);
list_del_init(&old_obj->lru);
DRM_FLAG_MASKED(bo->priv_flags, 0, _DRM_BO_FLAG_UNFENCED);
drm_bo_add_to_lru(old_obj);
drm_bo_usage_deref_locked(&old_obj);
mutex_unlock(&dev->struct_mutex);
}
*old_mem = *new_mem;
new_mem->mm_node = NULL;
old_mem->proposed_flags = save_proposed_flags;
DRM_FLAG_MASKED(save_flags, new_mem->flags, DRM_BO_MASK_MEMTYPE);
return 0;
}
EXPORT_SYMBOL(drm_bo_move_accel_cleanup);
int drm_bo_same_page(unsigned long offset,
unsigned long offset2)
{
return (offset & PAGE_MASK) == (offset2 & PAGE_MASK);
}
EXPORT_SYMBOL(drm_bo_same_page);
unsigned long drm_bo_offset_end(unsigned long offset,
unsigned long end)
{
offset = (offset + PAGE_SIZE) & PAGE_MASK;
return (end < offset) ? end : offset;
}
EXPORT_SYMBOL(drm_bo_offset_end);
static pgprot_t drm_kernel_io_prot(uint32_t map_type)
{
pgprot_t tmp = PAGE_KERNEL;
#if defined(__i386__) || defined(__x86_64__)
#ifdef USE_PAT_WC
#warning using pat
if (drm_use_pat() && map_type == _DRM_TTM) {
pgprot_val(tmp) |= _PAGE_PAT;
return tmp;
}
#endif
if (boot_cpu_data.x86 > 3 && map_type != _DRM_AGP) {
pgprot_val(tmp) |= _PAGE_PCD;
pgprot_val(tmp) &= ~_PAGE_PWT;
}
#elif defined(__powerpc__)
pgprot_val(tmp) |= _PAGE_NO_CACHE;
if (map_type == _DRM_REGISTERS)
pgprot_val(tmp) |= _PAGE_GUARDED;
#endif
#if defined(__ia64__)
if (map_type == _DRM_TTM)
tmp = pgprot_writecombine(tmp);
else
tmp = pgprot_noncached(tmp);
#endif
return tmp;
}
static int drm_bo_ioremap(struct drm_buffer_object *bo, unsigned long bus_base,
unsigned long bus_offset, unsigned long bus_size,
struct drm_bo_kmap_obj *map)
{
struct drm_device *dev = bo->dev;
struct drm_bo_mem_reg *mem = &bo->mem;
struct drm_mem_type_manager *man = &dev->bm.man[mem->mem_type];
if (!(man->flags & _DRM_FLAG_NEEDS_IOREMAP)) {
map->bo_kmap_type = bo_map_premapped;
map->virtual = (void *)(((u8 *) man->io_addr) + bus_offset);
} else {
map->bo_kmap_type = bo_map_iomap;
map->virtual = ioremap_nocache(bus_base + bus_offset, bus_size);
}
return (!map->virtual) ? -ENOMEM : 0;
}
static int drm_bo_kmap_ttm(struct drm_buffer_object *bo,
unsigned long start_page, unsigned long num_pages,
struct drm_bo_kmap_obj *map)
{
struct drm_device *dev = bo->dev;
struct drm_bo_mem_reg *mem = &bo->mem;
struct drm_mem_type_manager *man = &dev->bm.man[mem->mem_type];
pgprot_t prot;
struct drm_ttm *ttm = bo->ttm;
struct page *d;
int i;
BUG_ON(!ttm);
if (num_pages == 1 && (mem->flags & DRM_BO_FLAG_CACHED)) {
/*
* We're mapping a single page, and the desired
* page protection is consistent with the bo.
*/
map->bo_kmap_type = bo_map_kmap;
map->page = drm_ttm_get_page(ttm, start_page);
map->virtual = kmap(map->page);
} else {
/*
* Populate the part we're mapping;
*/
for (i = start_page; i < start_page + num_pages; ++i) {
d = drm_ttm_get_page(ttm, i);
if (!d)
return -ENOMEM;
}
/*
* We need to use vmap to get the desired page protection
* or to make the buffer object look contigous.
*/
prot = (mem->flags & DRM_BO_FLAG_CACHED) ?
PAGE_KERNEL :
drm_kernel_io_prot(man->drm_bus_maptype);
map->bo_kmap_type = bo_map_vmap;
map->virtual = vmap(ttm->pages + start_page,
num_pages, 0, prot);
}
return (!map->virtual) ? -ENOMEM : 0;
}
/*
* This function is to be used for kernel mapping of buffer objects.
* It chooses the appropriate mapping method depending on the memory type
* and caching policy the buffer currently has.
* Mapping multiple pages or buffers that live in io memory is a bit slow and
* consumes vmalloc space. Be restrictive with such mappings.
* Mapping single pages usually returns the logical kernel address,
* (which is fast)
* BUG may use slower temporary mappings for high memory pages or
* uncached / write-combined pages.
*
* The function fills in a drm_bo_kmap_obj which can be used to return the
* kernel virtual address of the buffer.
*
* Code servicing a non-priviliged user request is only allowed to map one
* page at a time. We might need to implement a better scheme to stop such
* processes from consuming all vmalloc space.
*/
int drm_bo_kmap(struct drm_buffer_object *bo, unsigned long start_page,
unsigned long num_pages, struct drm_bo_kmap_obj *map)
{
int ret;
unsigned long bus_base;
unsigned long bus_offset;
unsigned long bus_size;
map->virtual = NULL;
if (num_pages > bo->num_pages)
return -EINVAL;
if (start_page > bo->num_pages)
return -EINVAL;
#if 0
if (num_pages > 1 && !DRM_SUSER(DRM_CURPROC))
return -EPERM;
#endif
ret = drm_bo_pci_offset(bo->dev, &bo->mem, &bus_base,
&bus_offset, &bus_size);
if (ret)
return ret;
if (bus_size == 0) {
return drm_bo_kmap_ttm(bo, start_page, num_pages, map);
} else {
bus_offset += start_page << PAGE_SHIFT;
bus_size = num_pages << PAGE_SHIFT;
return drm_bo_ioremap(bo, bus_base, bus_offset, bus_size, map);
}
}
EXPORT_SYMBOL(drm_bo_kmap);
void drm_bo_kunmap(struct drm_bo_kmap_obj *map)
{
if (!map->virtual)
return;
switch (map->bo_kmap_type) {
case bo_map_iomap:
iounmap(map->virtual);
break;
case bo_map_vmap:
vunmap(map->virtual);
break;
case bo_map_kmap:
kunmap(map->page);
break;
case bo_map_premapped:
break;
default:
BUG();
}
map->virtual = NULL;
map->page = NULL;
}
EXPORT_SYMBOL(drm_bo_kunmap);
int drm_bo_pfn_prot(struct drm_buffer_object *bo,
unsigned long dst_offset,
unsigned long *pfn,
pgprot_t *prot)
{
struct drm_bo_mem_reg *mem = &bo->mem;
struct drm_device *dev = bo->dev;
unsigned long bus_offset;
unsigned long bus_size;
unsigned long bus_base;
struct drm_mem_type_manager *man = &dev->bm.man[mem->mem_type];
int ret;
ret = drm_bo_pci_offset(dev, mem, &bus_base, &bus_offset,
&bus_size);
if (ret)
return -EINVAL;
if (bus_size != 0)
*pfn = (bus_base + bus_offset + dst_offset) >> PAGE_SHIFT;
else if (!bo->ttm)
return -EINVAL;
else
*pfn = page_to_pfn(drm_ttm_get_page(bo->ttm, dst_offset >> PAGE_SHIFT));
*prot = (mem->flags & DRM_BO_FLAG_CACHED) ?
PAGE_KERNEL : drm_kernel_io_prot(man->drm_bus_maptype);
return 0;
}
EXPORT_SYMBOL(drm_bo_pfn_prot);