mesa-drm/linux-core/intel_sdvo.c
Jesse Barnes fa116081a9 Fixup sysfs output registration
Put off registering new outputs with sysfs until they're properly configured,
or we may get duplicates if the type hasn't been set yet (as is the case with
SDVO initialization).  This also means moving de-registration into the cleanup
function instead of output destroy, since the latter occurs during the normal
course of setup when an output isn't found (and therefore not registered with
sysfs yet.
2008-04-09 11:30:15 -07:00

1156 lines
32 KiB
C

/*
* Copyright © 2006-2007 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*
* Authors:
* Eric Anholt <eric@anholt.net>
*/
/*
* Copyright 2006 Dave Airlie <airlied@linux.ie>
* Jesse Barnes <jesse.barnes@intel.com>
*/
#include <linux/i2c.h>
#include <linux/delay.h>
#include "drmP.h"
#include "drm.h"
#include "drm_crtc.h"
#include "intel_drv.h"
#include "i915_drm.h"
#include "i915_drv.h"
#include "intel_sdvo_regs.h"
struct intel_sdvo_priv {
struct intel_i2c_chan *i2c_bus;
int slaveaddr;
int output_device;
u16 active_outputs;
struct intel_sdvo_caps caps;
int pixel_clock_min, pixel_clock_max;
int save_sdvo_mult;
u16 save_active_outputs;
struct intel_sdvo_dtd save_input_dtd_1, save_input_dtd_2;
struct intel_sdvo_dtd save_output_dtd[16];
u32 save_SDVOX;
};
/**
* Writes the SDVOB or SDVOC with the given value, but always writes both
* SDVOB and SDVOC to work around apparent hardware issues (according to
* comments in the BIOS).
*/
void intel_sdvo_write_sdvox(struct drm_output *output, u32 val)
{
struct drm_device *dev = output->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_output *intel_output = output->driver_private;
struct intel_sdvo_priv *sdvo_priv = intel_output->dev_priv;
u32 bval = val, cval = val;
int i;
if (sdvo_priv->output_device == SDVOB) {
cval = I915_READ(SDVOC);
} else {
bval = I915_READ(SDVOB);
}
/*
* Write the registers twice for luck. Sometimes,
* writing them only once doesn't appear to 'stick'.
* The BIOS does this too. Yay, magic
*/
for (i = 0; i < 2; i++)
{
I915_WRITE(SDVOB, bval);
I915_READ(SDVOB);
I915_WRITE(SDVOC, cval);
I915_READ(SDVOC);
}
}
static bool intel_sdvo_read_byte(struct drm_output *output, u8 addr,
u8 *ch)
{
struct intel_output *intel_output = output->driver_private;
struct intel_sdvo_priv *sdvo_priv = intel_output->dev_priv;
u8 out_buf[2];
u8 buf[2];
int ret;
struct i2c_msg msgs[] = {
{
.addr = sdvo_priv->i2c_bus->slave_addr,
.flags = 0,
.len = 1,
.buf = out_buf,
},
{
.addr = sdvo_priv->i2c_bus->slave_addr,
.flags = I2C_M_RD,
.len = 1,
.buf = buf,
}
};
out_buf[0] = addr;
out_buf[1] = 0;
if ((ret = i2c_transfer(&sdvo_priv->i2c_bus->adapter, msgs, 2)) == 2)
{
// DRM_DEBUG("got back from addr %02X = %02x\n", out_buf[0], buf[0]);
*ch = buf[0];
return true;
}
DRM_DEBUG("i2c transfer returned %d\n", ret);
return false;
}
static bool intel_sdvo_read_byte_quiet(struct drm_output *output, int addr,
u8 *ch)
{
return true;
}
static bool intel_sdvo_write_byte(struct drm_output *output, int addr,
u8 ch)
{
struct intel_output *intel_output = output->driver_private;
u8 out_buf[2];
struct i2c_msg msgs[] = {
{
.addr = intel_output->i2c_bus->slave_addr,
.flags = 0,
.len = 2,
.buf = out_buf,
}
};
out_buf[0] = addr;
out_buf[1] = ch;
if (i2c_transfer(&intel_output->i2c_bus->adapter, msgs, 1) == 1)
{
return true;
}
return false;
}
#define SDVO_CMD_NAME_ENTRY(cmd) {cmd, #cmd}
/** Mapping of command numbers to names, for debug output */
const static struct _sdvo_cmd_name {
u8 cmd;
char *name;
} sdvo_cmd_names[] = {
SDVO_CMD_NAME_ENTRY(SDVO_CMD_RESET),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_DEVICE_CAPS),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_FIRMWARE_REV),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_TRAINED_INPUTS),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_ACTIVE_OUTPUTS),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_ACTIVE_OUTPUTS),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_IN_OUT_MAP),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_IN_OUT_MAP),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_ATTACHED_DISPLAYS),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_HOT_PLUG_SUPPORT),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_ACTIVE_HOT_PLUG),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_ACTIVE_HOT_PLUG),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_INTERRUPT_EVENT_SOURCE),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_TARGET_INPUT),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_TARGET_OUTPUT),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_INPUT_TIMINGS_PART1),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_INPUT_TIMINGS_PART2),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_INPUT_TIMINGS_PART1),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_INPUT_TIMINGS_PART2),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_INPUT_TIMINGS_PART1),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_OUTPUT_TIMINGS_PART1),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_OUTPUT_TIMINGS_PART2),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_OUTPUT_TIMINGS_PART1),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_OUTPUT_TIMINGS_PART2),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_CREATE_PREFERRED_INPUT_TIMING),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_PREFERRED_INPUT_TIMING_PART1),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_PREFERRED_INPUT_TIMING_PART2),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_INPUT_PIXEL_CLOCK_RANGE),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_OUTPUT_PIXEL_CLOCK_RANGE),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_SUPPORTED_CLOCK_RATE_MULTS),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_CLOCK_RATE_MULT),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_CLOCK_RATE_MULT),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_SUPPORTED_TV_FORMATS),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_TV_FORMAT),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_TV_FORMAT),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_TV_RESOLUTION_SUPPORT),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_CONTROL_BUS_SWITCH),
};
#define SDVO_NAME(dev_priv) ((dev_priv)->output_device == SDVOB ? "SDVOB" : "SDVOC")
#define SDVO_PRIV(output) ((struct intel_sdvo_priv *) (output)->dev_priv)
static void intel_sdvo_write_cmd(struct drm_output *output, u8 cmd,
void *args, int args_len)
{
struct intel_output *intel_output = output->driver_private;
struct intel_sdvo_priv *sdvo_priv = intel_output->dev_priv;
int i;
if (1) {
DRM_DEBUG("%s: W: %02X ", SDVO_NAME(sdvo_priv), cmd);
for (i = 0; i < args_len; i++)
printk("%02X ", ((u8 *)args)[i]);
for (; i < 8; i++)
printk(" ");
for (i = 0; i < sizeof(sdvo_cmd_names) / sizeof(sdvo_cmd_names[0]); i++) {
if (cmd == sdvo_cmd_names[i].cmd) {
printk("(%s)", sdvo_cmd_names[i].name);
break;
}
}
if (i == sizeof(sdvo_cmd_names)/ sizeof(sdvo_cmd_names[0]))
printk("(%02X)",cmd);
printk("\n");
}
for (i = 0; i < args_len; i++) {
intel_sdvo_write_byte(output, SDVO_I2C_ARG_0 - i, ((u8*)args)[i]);
}
intel_sdvo_write_byte(output, SDVO_I2C_OPCODE, cmd);
}
static const char *cmd_status_names[] = {
"Power on",
"Success",
"Not supported",
"Invalid arg",
"Pending",
"Target not specified",
"Scaling not supported"
};
static u8 intel_sdvo_read_response(struct drm_output *output, void *response,
int response_len)
{
struct intel_output *intel_output = output->driver_private;
struct intel_sdvo_priv *sdvo_priv = intel_output->dev_priv;
int i;
u8 status;
u8 retry = 50;
while (retry--) {
/* Read the command response */
for (i = 0; i < response_len; i++) {
intel_sdvo_read_byte(output, SDVO_I2C_RETURN_0 + i,
&((u8 *)response)[i]);
}
/* read the return status */
intel_sdvo_read_byte(output, SDVO_I2C_CMD_STATUS, &status);
if (1) {
DRM_DEBUG("%s: R: ", SDVO_NAME(sdvo_priv));
for (i = 0; i < response_len; i++)
printk("%02X ", ((u8 *)response)[i]);
for (; i < 8; i++)
printk(" ");
if (status <= SDVO_CMD_STATUS_SCALING_NOT_SUPP)
printk("(%s)", cmd_status_names[status]);
else
printk("(??? %d)", status);
printk("\n");
}
if (status != SDVO_CMD_STATUS_PENDING)
return status;
mdelay(50);
}
return status;
}
int intel_sdvo_get_pixel_multiplier(struct drm_display_mode *mode)
{
if (mode->clock >= 100000)
return 1;
else if (mode->clock >= 50000)
return 2;
else
return 4;
}
/**
* Don't check status code from this as it switches the bus back to the
* SDVO chips which defeats the purpose of doing a bus switch in the first
* place.
*/
void intel_sdvo_set_control_bus_switch(struct drm_output *output, u8 target)
{
intel_sdvo_write_cmd(output, SDVO_CMD_SET_CONTROL_BUS_SWITCH, &target, 1);
}
static bool intel_sdvo_set_target_input(struct drm_output *output, bool target_0, bool target_1)
{
struct intel_sdvo_set_target_input_args targets = {0};
u8 status;
if (target_0 && target_1)
return SDVO_CMD_STATUS_NOTSUPP;
if (target_1)
targets.target_1 = 1;
intel_sdvo_write_cmd(output, SDVO_CMD_SET_TARGET_INPUT, &targets,
sizeof(targets));
status = intel_sdvo_read_response(output, NULL, 0);
return (status == SDVO_CMD_STATUS_SUCCESS);
}
/**
* Return whether each input is trained.
*
* This function is making an assumption about the layout of the response,
* which should be checked against the docs.
*/
static bool intel_sdvo_get_trained_inputs(struct drm_output *output, bool *input_1, bool *input_2)
{
struct intel_sdvo_get_trained_inputs_response response;
u8 status;
intel_sdvo_write_cmd(output, SDVO_CMD_GET_TRAINED_INPUTS, NULL, 0);
status = intel_sdvo_read_response(output, &response, sizeof(response));
if (status != SDVO_CMD_STATUS_SUCCESS)
return false;
*input_1 = response.input0_trained;
*input_2 = response.input1_trained;
return true;
}
static bool intel_sdvo_get_active_outputs(struct drm_output *output,
u16 *outputs)
{
u8 status;
intel_sdvo_write_cmd(output, SDVO_CMD_GET_ACTIVE_OUTPUTS, NULL, 0);
status = intel_sdvo_read_response(output, outputs, sizeof(*outputs));
return (status == SDVO_CMD_STATUS_SUCCESS);
}
static bool intel_sdvo_set_active_outputs(struct drm_output *output,
u16 outputs)
{
u8 status;
intel_sdvo_write_cmd(output, SDVO_CMD_SET_ACTIVE_OUTPUTS, &outputs,
sizeof(outputs));
status = intel_sdvo_read_response(output, NULL, 0);
return (status == SDVO_CMD_STATUS_SUCCESS);
}
static bool intel_sdvo_set_encoder_power_state(struct drm_output *output,
int mode)
{
u8 status, state = SDVO_ENCODER_STATE_ON;
switch (mode) {
case DPMSModeOn:
state = SDVO_ENCODER_STATE_ON;
break;
case DPMSModeStandby:
state = SDVO_ENCODER_STATE_STANDBY;
break;
case DPMSModeSuspend:
state = SDVO_ENCODER_STATE_SUSPEND;
break;
case DPMSModeOff:
state = SDVO_ENCODER_STATE_OFF;
break;
}
intel_sdvo_write_cmd(output, SDVO_CMD_SET_ENCODER_POWER_STATE, &state,
sizeof(state));
status = intel_sdvo_read_response(output, NULL, 0);
return (status == SDVO_CMD_STATUS_SUCCESS);
}
static bool intel_sdvo_get_input_pixel_clock_range(struct drm_output *output,
int *clock_min,
int *clock_max)
{
struct intel_sdvo_pixel_clock_range clocks;
u8 status;
intel_sdvo_write_cmd(output, SDVO_CMD_GET_INPUT_PIXEL_CLOCK_RANGE,
NULL, 0);
status = intel_sdvo_read_response(output, &clocks, sizeof(clocks));
if (status != SDVO_CMD_STATUS_SUCCESS)
return false;
/* Convert the values from units of 10 kHz to kHz. */
*clock_min = clocks.min * 10;
*clock_max = clocks.max * 10;
return true;
}
static bool intel_sdvo_set_target_output(struct drm_output *output,
u16 outputs)
{
u8 status;
intel_sdvo_write_cmd(output, SDVO_CMD_SET_TARGET_OUTPUT, &outputs,
sizeof(outputs));
status = intel_sdvo_read_response(output, NULL, 0);
return (status == SDVO_CMD_STATUS_SUCCESS);
}
static bool intel_sdvo_get_timing(struct drm_output *output, u8 cmd,
struct intel_sdvo_dtd *dtd)
{
u8 status;
intel_sdvo_write_cmd(output, cmd, NULL, 0);
status = intel_sdvo_read_response(output, &dtd->part1,
sizeof(dtd->part1));
if (status != SDVO_CMD_STATUS_SUCCESS)
return false;
intel_sdvo_write_cmd(output, cmd + 1, NULL, 0);
status = intel_sdvo_read_response(output, &dtd->part2,
sizeof(dtd->part2));
if (status != SDVO_CMD_STATUS_SUCCESS)
return false;
return true;
}
static bool intel_sdvo_get_input_timing(struct drm_output *output,
struct intel_sdvo_dtd *dtd)
{
return intel_sdvo_get_timing(output,
SDVO_CMD_GET_INPUT_TIMINGS_PART1, dtd);
}
static bool intel_sdvo_get_output_timing(struct drm_output *output,
struct intel_sdvo_dtd *dtd)
{
return intel_sdvo_get_timing(output,
SDVO_CMD_GET_OUTPUT_TIMINGS_PART1, dtd);
}
static bool intel_sdvo_set_timing(struct drm_output *output, u8 cmd,
struct intel_sdvo_dtd *dtd)
{
u8 status;
intel_sdvo_write_cmd(output, cmd, &dtd->part1, sizeof(dtd->part1));
status = intel_sdvo_read_response(output, NULL, 0);
if (status != SDVO_CMD_STATUS_SUCCESS)
return false;
intel_sdvo_write_cmd(output, cmd + 1, &dtd->part2, sizeof(dtd->part2));
status = intel_sdvo_read_response(output, NULL, 0);
if (status != SDVO_CMD_STATUS_SUCCESS)
return false;
return true;
}
static bool intel_sdvo_set_input_timing(struct drm_output *output,
struct intel_sdvo_dtd *dtd)
{
return intel_sdvo_set_timing(output,
SDVO_CMD_SET_INPUT_TIMINGS_PART1, dtd);
}
static bool intel_sdvo_set_output_timing(struct drm_output *output,
struct intel_sdvo_dtd *dtd)
{
return intel_sdvo_set_timing(output,
SDVO_CMD_SET_OUTPUT_TIMINGS_PART1, dtd);
}
#if 0
static bool intel_sdvo_get_preferred_input_timing(struct drm_output *output,
struct intel_sdvo_dtd *dtd)
{
struct intel_output *intel_output = output->driver_private;
struct intel_sdvo_priv *sdvo_priv = intel_output->dev_priv;
u8 status;
intel_sdvo_write_cmd(output, SDVO_CMD_GET_PREFERRED_INPUT_TIMING_PART1,
NULL, 0);
status = intel_sdvo_read_response(output, &dtd->part1,
sizeof(dtd->part1));
if (status != SDVO_CMD_STATUS_SUCCESS)
return false;
intel_sdvo_write_cmd(output, SDVO_CMD_GET_PREFERRED_INPUT_TIMING_PART2,
NULL, 0);
status = intel_sdvo_read_response(output, &dtd->part2,
sizeof(dtd->part2));
if (status != SDVO_CMD_STATUS_SUCCESS)
return false;
return true;
}
#endif
static int intel_sdvo_get_clock_rate_mult(struct drm_output *output)
{
u8 response, status;
intel_sdvo_write_cmd(output, SDVO_CMD_GET_CLOCK_RATE_MULT, NULL, 0);
status = intel_sdvo_read_response(output, &response, 1);
if (status != SDVO_CMD_STATUS_SUCCESS) {
DRM_DEBUG("Couldn't get SDVO clock rate multiplier\n");
return SDVO_CLOCK_RATE_MULT_1X;
} else {
DRM_DEBUG("Current clock rate multiplier: %d\n", response);
}
return response;
}
static bool intel_sdvo_set_clock_rate_mult(struct drm_output *output, u8 val)
{
u8 status;
intel_sdvo_write_cmd(output, SDVO_CMD_SET_CLOCK_RATE_MULT, &val, 1);
status = intel_sdvo_read_response(output, NULL, 0);
if (status != SDVO_CMD_STATUS_SUCCESS)
return false;
return true;
}
static bool intel_sdvo_mode_fixup(struct drm_output *output,
struct drm_display_mode *mode,
struct drm_display_mode *adjusted_mode)
{
/* Make the CRTC code factor in the SDVO pixel multiplier. The SDVO
* device will be told of the multiplier during mode_set.
*/
adjusted_mode->clock *= intel_sdvo_get_pixel_multiplier(mode);
return true;
}
static void intel_sdvo_mode_set(struct drm_output *output,
struct drm_display_mode *mode,
struct drm_display_mode *adjusted_mode)
{
struct drm_device *dev = output->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_crtc *crtc = output->crtc;
struct intel_crtc *intel_crtc = crtc->driver_private;
struct intel_output *intel_output = output->driver_private;
struct intel_sdvo_priv *sdvo_priv = intel_output->dev_priv;
u16 width, height;
u16 h_blank_len, h_sync_len, v_blank_len, v_sync_len;
u16 h_sync_offset, v_sync_offset;
u32 sdvox;
struct intel_sdvo_dtd output_dtd;
int sdvo_pixel_multiply;
if (!mode)
return;
width = mode->crtc_hdisplay;
height = mode->crtc_vdisplay;
/* do some mode translations */
h_blank_len = mode->crtc_hblank_end - mode->crtc_hblank_start;
h_sync_len = mode->crtc_hsync_end - mode->crtc_hsync_start;
v_blank_len = mode->crtc_vblank_end - mode->crtc_vblank_start;
v_sync_len = mode->crtc_vsync_end - mode->crtc_vsync_start;
h_sync_offset = mode->crtc_hsync_start - mode->crtc_hblank_start;
v_sync_offset = mode->crtc_vsync_start - mode->crtc_vblank_start;
output_dtd.part1.clock = mode->clock / 10;
output_dtd.part1.h_active = width & 0xff;
output_dtd.part1.h_blank = h_blank_len & 0xff;
output_dtd.part1.h_high = (((width >> 8) & 0xf) << 4) |
((h_blank_len >> 8) & 0xf);
output_dtd.part1.v_active = height & 0xff;
output_dtd.part1.v_blank = v_blank_len & 0xff;
output_dtd.part1.v_high = (((height >> 8) & 0xf) << 4) |
((v_blank_len >> 8) & 0xf);
output_dtd.part2.h_sync_off = h_sync_offset;
output_dtd.part2.h_sync_width = h_sync_len & 0xff;
output_dtd.part2.v_sync_off_width = (v_sync_offset & 0xf) << 4 |
(v_sync_len & 0xf);
output_dtd.part2.sync_off_width_high = ((h_sync_offset & 0x300) >> 2) |
((h_sync_len & 0x300) >> 4) | ((v_sync_offset & 0x30) >> 2) |
((v_sync_len & 0x30) >> 4);
output_dtd.part2.dtd_flags = 0x18;
if (mode->flags & V_PHSYNC)
output_dtd.part2.dtd_flags |= 0x2;
if (mode->flags & V_PVSYNC)
output_dtd.part2.dtd_flags |= 0x4;
output_dtd.part2.sdvo_flags = 0;
output_dtd.part2.v_sync_off_high = v_sync_offset & 0xc0;
output_dtd.part2.reserved = 0;
/* Set the output timing to the screen */
intel_sdvo_set_target_output(output, sdvo_priv->active_outputs);
intel_sdvo_set_output_timing(output, &output_dtd);
/* Set the input timing to the screen. Assume always input 0. */
intel_sdvo_set_target_input(output, true, false);
/* We would like to use i830_sdvo_create_preferred_input_timing() to
* provide the device with a timing it can support, if it supports that
* feature. However, presumably we would need to adjust the CRTC to
* output the preferred timing, and we don't support that currently.
*/
#if 0
success = intel_sdvo_create_preferred_input_timing(output, clock,
width, height);
if (success) {
struct intel_sdvo_dtd *input_dtd;
intel_sdvo_get_preferred_input_timing(output, &input_dtd);
intel_sdvo_set_input_timing(output, &input_dtd);
}
#else
intel_sdvo_set_input_timing(output, &output_dtd);
#endif
switch (intel_sdvo_get_pixel_multiplier(mode)) {
case 1:
intel_sdvo_set_clock_rate_mult(output,
SDVO_CLOCK_RATE_MULT_1X);
break;
case 2:
intel_sdvo_set_clock_rate_mult(output,
SDVO_CLOCK_RATE_MULT_2X);
break;
case 4:
intel_sdvo_set_clock_rate_mult(output,
SDVO_CLOCK_RATE_MULT_4X);
break;
}
/* Set the SDVO control regs. */
if (0/*IS_I965GM(dev)*/) {
sdvox = SDVO_BORDER_ENABLE;
} else {
sdvox = I915_READ(sdvo_priv->output_device);
switch (sdvo_priv->output_device) {
case SDVOB:
sdvox &= SDVOB_PRESERVE_MASK;
break;
case SDVOC:
sdvox &= SDVOC_PRESERVE_MASK;
break;
}
sdvox |= (9 << 19) | SDVO_BORDER_ENABLE;
}
if (intel_crtc->pipe == 1)
sdvox |= SDVO_PIPE_B_SELECT;
sdvo_pixel_multiply = intel_sdvo_get_pixel_multiplier(mode);
if (IS_I965G(dev)) {
/* done in crtc_mode_set as the dpll_md reg must be written
early */
} else if (IS_I945G(dev) || IS_I945GM(dev)) {
/* done in crtc_mode_set as it lives inside the
dpll register */
} else {
sdvox |= (sdvo_pixel_multiply - 1) << SDVO_PORT_MULTIPLY_SHIFT;
}
intel_sdvo_write_sdvox(output, sdvox);
}
static void intel_sdvo_dpms(struct drm_output *output, int mode)
{
struct drm_device *dev = output->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_output *intel_output = output->driver_private;
struct intel_sdvo_priv *sdvo_priv = intel_output->dev_priv;
u32 temp;
if (mode != DPMSModeOn) {
intel_sdvo_set_active_outputs(output, 0);
if (0)
intel_sdvo_set_encoder_power_state(output, mode);
if (mode == DPMSModeOff) {
temp = I915_READ(sdvo_priv->output_device);
if ((temp & SDVO_ENABLE) != 0) {
intel_sdvo_write_sdvox(output, temp & ~SDVO_ENABLE);
}
}
} else {
bool input1, input2;
int i;
u8 status;
temp = I915_READ(sdvo_priv->output_device);
if ((temp & SDVO_ENABLE) == 0)
intel_sdvo_write_sdvox(output, temp | SDVO_ENABLE);
for (i = 0; i < 2; i++)
intel_wait_for_vblank(dev);
status = intel_sdvo_get_trained_inputs(output, &input1,
&input2);
/* Warn if the device reported failure to sync.
* A lot of SDVO devices fail to notify of sync, but it's
* a given it the status is a success, we succeeded.
*/
if (status == SDVO_CMD_STATUS_SUCCESS && !input1) {
DRM_DEBUG("First %s output reported failure to sync\n",
SDVO_NAME(sdvo_priv));
}
if (0)
intel_sdvo_set_encoder_power_state(output, mode);
intel_sdvo_set_active_outputs(output, sdvo_priv->active_outputs);
}
return;
}
static void intel_sdvo_save(struct drm_output *output)
{
struct drm_device *dev = output->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_output *intel_output = output->driver_private;
struct intel_sdvo_priv *sdvo_priv = intel_output->dev_priv;
int o;
sdvo_priv->save_sdvo_mult = intel_sdvo_get_clock_rate_mult(output);
intel_sdvo_get_active_outputs(output, &sdvo_priv->save_active_outputs);
if (sdvo_priv->caps.sdvo_inputs_mask & 0x1) {
intel_sdvo_set_target_input(output, true, false);
intel_sdvo_get_input_timing(output,
&sdvo_priv->save_input_dtd_1);
}
if (sdvo_priv->caps.sdvo_inputs_mask & 0x2) {
intel_sdvo_set_target_input(output, false, true);
intel_sdvo_get_input_timing(output,
&sdvo_priv->save_input_dtd_2);
}
for (o = SDVO_OUTPUT_FIRST; o <= SDVO_OUTPUT_LAST; o++)
{
u16 this_output = (1 << o);
if (sdvo_priv->caps.output_flags & this_output)
{
intel_sdvo_set_target_output(output, this_output);
intel_sdvo_get_output_timing(output,
&sdvo_priv->save_output_dtd[o]);
}
}
sdvo_priv->save_SDVOX = I915_READ(sdvo_priv->output_device);
}
static void intel_sdvo_restore(struct drm_output *output)
{
struct drm_device *dev = output->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_output *intel_output = output->driver_private;
struct intel_sdvo_priv *sdvo_priv = intel_output->dev_priv;
int o;
int i;
bool input1, input2;
u8 status;
intel_sdvo_set_active_outputs(output, 0);
for (o = SDVO_OUTPUT_FIRST; o <= SDVO_OUTPUT_LAST; o++)
{
u16 this_output = (1 << o);
if (sdvo_priv->caps.output_flags & this_output) {
intel_sdvo_set_target_output(output, this_output);
intel_sdvo_set_output_timing(output, &sdvo_priv->save_output_dtd[o]);
}
}
if (sdvo_priv->caps.sdvo_inputs_mask & 0x1) {
intel_sdvo_set_target_input(output, true, false);
intel_sdvo_set_input_timing(output, &sdvo_priv->save_input_dtd_1);
}
if (sdvo_priv->caps.sdvo_inputs_mask & 0x2) {
intel_sdvo_set_target_input(output, false, true);
intel_sdvo_set_input_timing(output, &sdvo_priv->save_input_dtd_2);
}
intel_sdvo_set_clock_rate_mult(output, sdvo_priv->save_sdvo_mult);
I915_WRITE(sdvo_priv->output_device, sdvo_priv->save_SDVOX);
if (sdvo_priv->save_SDVOX & SDVO_ENABLE)
{
for (i = 0; i < 2; i++)
intel_wait_for_vblank(dev);
status = intel_sdvo_get_trained_inputs(output, &input1, &input2);
if (status == SDVO_CMD_STATUS_SUCCESS && !input1)
DRM_DEBUG("First %s output reported failure to sync\n",
SDVO_NAME(sdvo_priv));
}
intel_sdvo_set_active_outputs(output, sdvo_priv->save_active_outputs);
}
static int intel_sdvo_mode_valid(struct drm_output *output,
struct drm_display_mode *mode)
{
struct intel_output *intel_output = output->driver_private;
struct intel_sdvo_priv *sdvo_priv = intel_output->dev_priv;
if (mode->flags & V_DBLSCAN)
return MODE_NO_DBLESCAN;
if (sdvo_priv->pixel_clock_min > mode->clock)
return MODE_CLOCK_LOW;
if (sdvo_priv->pixel_clock_max < mode->clock)
return MODE_CLOCK_HIGH;
return MODE_OK;
}
static bool intel_sdvo_get_capabilities(struct drm_output *output, struct intel_sdvo_caps *caps)
{
u8 status;
intel_sdvo_write_cmd(output, SDVO_CMD_GET_DEVICE_CAPS, NULL, 0);
status = intel_sdvo_read_response(output, caps, sizeof(*caps));
if (status != SDVO_CMD_STATUS_SUCCESS)
return false;
return true;
}
static void intel_sdvo_dump_cmd(struct drm_output *output, int opcode)
{
}
static void intel_sdvo_dump_device(struct drm_output *output)
{
}
void intel_sdvo_dump(void)
{
}
struct drm_output* intel_sdvo_find(struct drm_device *dev, int sdvoB)
{
struct drm_output *output = 0;
struct intel_output *iout = 0;
struct intel_sdvo_priv *sdvo;
/* find the sdvo output */
list_for_each_entry(output, &dev->mode_config.output_list, head) {
iout = output->driver_private;
if (iout->type != INTEL_OUTPUT_SDVO)
continue;
sdvo = iout->dev_priv;
if (sdvo->output_device == SDVOB && sdvoB)
return output;
if (sdvo->output_device == SDVOC && !sdvoB)
return output;
}
return 0;
}
int intel_sdvo_supports_hotplug(struct drm_output *output)
{
u8 response[2];
u8 status;
DRM_DEBUG("\n");
if (!output)
return 0;
intel_sdvo_write_cmd(output, SDVO_CMD_GET_HOT_PLUG_SUPPORT, NULL, 0);
status = intel_sdvo_read_response(output, &response, 2);
if (response[0] !=0)
return 1;
return 0;
}
void intel_sdvo_set_hotplug(struct drm_output *output, int on)
{
u8 response[2];
u8 status;
intel_sdvo_write_cmd(output, SDVO_CMD_GET_ACTIVE_HOT_PLUG, NULL, 0);
intel_sdvo_read_response(output, &response, 2);
if (on) {
intel_sdvo_write_cmd(output, SDVO_CMD_GET_HOT_PLUG_SUPPORT, NULL, 0);
status = intel_sdvo_read_response(output, &response, 2);
intel_sdvo_write_cmd(output, SDVO_CMD_SET_ACTIVE_HOT_PLUG, &response, 2);
} else {
response[0] = 0;
response[1] = 0;
intel_sdvo_write_cmd(output, SDVO_CMD_SET_ACTIVE_HOT_PLUG, &response, 2);
}
intel_sdvo_write_cmd(output, SDVO_CMD_GET_ACTIVE_HOT_PLUG, NULL, 0);
intel_sdvo_read_response(output, &response, 2);
}
static enum drm_output_status intel_sdvo_detect(struct drm_output *output)
{
u8 response[2];
u8 status;
intel_sdvo_write_cmd(output, SDVO_CMD_GET_ATTACHED_DISPLAYS, NULL, 0);
status = intel_sdvo_read_response(output, &response, 2);
DRM_DEBUG("SDVO response %d %d\n", response[0], response[1]);
if ((response[0] != 0) || (response[1] != 0))
return output_status_connected;
else
return output_status_disconnected;
}
static int intel_sdvo_get_modes(struct drm_output *output)
{
/* set the bus switch and get the modes */
intel_sdvo_set_control_bus_switch(output, SDVO_CONTROL_BUS_DDC2);
intel_ddc_get_modes(output);
if (list_empty(&output->probed_modes))
return 0;
return 1;
#if 0
/* Mac mini hack. On this device, I get DDC through the analog, which
* load-detects as disconnected. I fail to DDC through the SDVO DDC,
* but it does load-detect as connected. So, just steal the DDC bits
* from analog when we fail at finding it the right way.
*/
/* TODO */
return NULL;
return NULL;
#endif
}
static void intel_sdvo_destroy(struct drm_output *output)
{
struct intel_output *intel_output = output->driver_private;
if (intel_output->i2c_bus)
intel_i2c_destroy(intel_output->i2c_bus);
if (intel_output) {
kfree(intel_output);
output->driver_private = NULL;
}
}
static const struct drm_output_funcs intel_sdvo_output_funcs = {
.dpms = intel_sdvo_dpms,
.save = intel_sdvo_save,
.restore = intel_sdvo_restore,
.mode_valid = intel_sdvo_mode_valid,
.mode_fixup = intel_sdvo_mode_fixup,
.prepare = intel_output_prepare,
.mode_set = intel_sdvo_mode_set,
.commit = intel_output_commit,
.detect = intel_sdvo_detect,
.get_modes = intel_sdvo_get_modes,
.cleanup = intel_sdvo_destroy
};
void intel_sdvo_init(struct drm_device *dev, int output_device)
{
struct drm_output *output;
struct intel_output *intel_output;
struct intel_sdvo_priv *sdvo_priv;
struct intel_i2c_chan *i2cbus = NULL;
int connector_type;
u8 ch[0x40];
int i;
int output_type, output_id;
output = drm_output_create(dev, &intel_sdvo_output_funcs,
DRM_MODE_OUTPUT_NONE);
if (!output)
return;
intel_output = kcalloc(sizeof(struct intel_output)+sizeof(struct intel_sdvo_priv), 1, GFP_KERNEL);
if (!intel_output) {
drm_output_destroy(output);
return;
}
sdvo_priv = (struct intel_sdvo_priv *)(intel_output + 1);
intel_output->type = INTEL_OUTPUT_SDVO;
output->driver_private = intel_output;
output->interlace_allowed = 0;
output->doublescan_allowed = 0;
/* setup the DDC bus. */
if (output_device == SDVOB)
i2cbus = intel_i2c_create(dev, GPIOE, "SDVOCTRL_E for SDVOB");
else
i2cbus = intel_i2c_create(dev, GPIOE, "SDVOCTRL_E for SDVOC");
if (i2cbus == NULL) {
drm_output_destroy(output);
return;
}
sdvo_priv->i2c_bus = i2cbus;
if (output_device == SDVOB) {
output_id = 1;
sdvo_priv->i2c_bus->slave_addr = 0x38;
} else {
output_id = 2;
sdvo_priv->i2c_bus->slave_addr = 0x39;
}
sdvo_priv->output_device = output_device;
intel_output->i2c_bus = i2cbus;
intel_output->dev_priv = sdvo_priv;
/* Read the regs to test if we can talk to the device */
for (i = 0; i < 0x40; i++) {
if (!intel_sdvo_read_byte(output, i, &ch[i])) {
DRM_DEBUG("No SDVO device found on SDVO%c\n",
output_device == SDVOB ? 'B' : 'C');
drm_output_destroy(output);
return;
}
}
intel_sdvo_get_capabilities(output, &sdvo_priv->caps);
memset(&sdvo_priv->active_outputs, 0, sizeof(sdvo_priv->active_outputs));
/* TODO, CVBS, SVID, YPRPB & SCART outputs. */
if (sdvo_priv->caps.output_flags & SDVO_OUTPUT_RGB0)
{
sdvo_priv->active_outputs = SDVO_OUTPUT_RGB0;
output->subpixel_order = SubPixelHorizontalRGB;
output_type = DRM_MODE_OUTPUT_DAC;
connector_type = ConnectorVGA;
}
else if (sdvo_priv->caps.output_flags & SDVO_OUTPUT_RGB1)
{
sdvo_priv->active_outputs = SDVO_OUTPUT_RGB1;
output->subpixel_order = SubPixelHorizontalRGB;
output_type = DRM_MODE_OUTPUT_DAC;
connector_type = ConnectorVGA;
}
else if (sdvo_priv->caps.output_flags & SDVO_OUTPUT_TMDS0)
{
sdvo_priv->active_outputs = SDVO_OUTPUT_TMDS0;
output->subpixel_order = SubPixelHorizontalRGB;
output_type = DRM_MODE_OUTPUT_TMDS;
connector_type = ConnectorDVID;
}
else if (sdvo_priv->caps.output_flags & SDVO_OUTPUT_TMDS1)
{
sdvo_priv->active_outputs = SDVO_OUTPUT_TMDS1;
output->subpixel_order = SubPixelHorizontalRGB;
output_type = DRM_MODE_OUTPUT_TMDS;
connector_type = ConnectorDVID;
}
else
{
unsigned char bytes[2];
memcpy (bytes, &sdvo_priv->caps.output_flags, 2);
DRM_DEBUG("%s: No active RGB or TMDS outputs (0x%02x%02x)\n",
SDVO_NAME(sdvo_priv),
bytes[0], bytes[1]);
drm_output_destroy(output);
return;
}
output->output_type = output_type;
output->output_type_id = output_id;
drm_sysfs_output_add(output);
/* Set the input timing to the screen. Assume always input 0. */
intel_sdvo_set_target_input(output, true, false);
intel_sdvo_get_input_pixel_clock_range(output,
&sdvo_priv->pixel_clock_min,
&sdvo_priv->pixel_clock_max);
DRM_DEBUG("%s device VID/DID: %02X:%02X.%02X, "
"clock range %dMHz - %dMHz, "
"input 1: %c, input 2: %c, "
"output 1: %c, output 2: %c\n",
SDVO_NAME(sdvo_priv),
sdvo_priv->caps.vendor_id, sdvo_priv->caps.device_id,
sdvo_priv->caps.device_rev_id,
sdvo_priv->pixel_clock_min / 1000,
sdvo_priv->pixel_clock_max / 1000,
(sdvo_priv->caps.sdvo_inputs_mask & 0x1) ? 'Y' : 'N',
(sdvo_priv->caps.sdvo_inputs_mask & 0x2) ? 'Y' : 'N',
/* check currently supported outputs */
sdvo_priv->caps.output_flags &
(SDVO_OUTPUT_TMDS0 | SDVO_OUTPUT_RGB0) ? 'Y' : 'N',
sdvo_priv->caps.output_flags &
(SDVO_OUTPUT_TMDS1 | SDVO_OUTPUT_RGB1) ? 'Y' : 'N');
intel_output->ddc_bus = i2cbus;
drm_output_attach_property(output, dev->mode_config.connector_type_property, connector_type);
}