mesa-drm/bsd/drm/memory.c
2000-06-13 17:38:09 +00:00

458 lines
12 KiB
C

/* memory.c -- Memory management wrappers for DRM -*- c -*-
* Created: Thu Feb 4 14:00:34 1999 by faith@precisioninsight.com
*
* Copyright 1999 Precision Insight, Inc., Cedar Park, Texas.
* Copyright 2000 VA Linux Systems, Inc., Sunnyvale, California.
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* PRECISION INSIGHT AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*
* Authors:
* Rickard E. (Rik) Faith <faith@valinux.com>
*
*/
#define __NO_VERSION__
#include "drmP.h"
#include <vm/vm.h>
#include <vm/pmap.h>
#ifdef DRM_AGP
#include <sys/agpio.h>
#endif
MALLOC_DEFINE(M_DRM, "drm", "DRM Data Structures");
typedef struct drm_mem_stats {
const char *name;
int succeed_count;
int free_count;
int fail_count;
unsigned long bytes_allocated;
unsigned long bytes_freed;
} drm_mem_stats_t;
#ifdef SMP
static struct simplelock drm_mem_lock;
#endif
static unsigned long drm_ram_available = 0;
static unsigned long drm_ram_used = 0;
static drm_mem_stats_t drm_mem_stats[] = {
[DRM_MEM_DMA] = { "dmabufs" },
[DRM_MEM_SAREA] = { "sareas" },
[DRM_MEM_DRIVER] = { "driver" },
[DRM_MEM_MAGIC] = { "magic" },
[DRM_MEM_IOCTLS] = { "ioctltab" },
[DRM_MEM_MAPS] = { "maplist" },
[DRM_MEM_VMAS] = { "vmalist" },
[DRM_MEM_BUFS] = { "buflist" },
[DRM_MEM_SEGS] = { "seglist" },
[DRM_MEM_PAGES] = { "pagelist" },
[DRM_MEM_FILES] = { "files" },
[DRM_MEM_QUEUES] = { "queues" },
[DRM_MEM_CMDS] = { "commands" },
[DRM_MEM_MAPPINGS] = { "mappings" },
[DRM_MEM_BUFLISTS] = { "buflists" },
[DRM_MEM_AGPLISTS] = { "agplist" },
[DRM_MEM_TOTALAGP] = { "totalagp" },
[DRM_MEM_BOUNDAGP] = { "boundagp" },
[DRM_MEM_CTXBITMAP] = { "ctxbitmap"},
{ NULL, 0, } /* Last entry must be null */
};
void drm_mem_init(void)
{
drm_mem_stats_t *mem;
for (mem = drm_mem_stats; mem->name; ++mem) {
mem->succeed_count = 0;
mem->free_count = 0;
mem->fail_count = 0;
mem->bytes_allocated = 0;
mem->bytes_freed = 0;
}
drm_ram_available = 0; /* si.totalram; */
drm_ram_used = 0;
}
/* drm_mem_info is called whenever a process reads /dev/drm/mem. */
static int _drm_mem_info SYSCTL_HANDLER_ARGS
{
drm_mem_stats_t *pt;
char buf[128];
int error;
DRM_SYSCTL_PRINT(" total counts "
" | outstanding \n");
DRM_SYSCTL_PRINT("type alloc freed fail bytes freed"
" | allocs bytes\n\n");
DRM_SYSCTL_PRINT("%-9.9s %5d %5d %4d %10lu |\n",
"system", 0, 0, 0, drm_ram_available);
DRM_SYSCTL_PRINT("%-9.9s %5d %5d %4d %10lu |\n",
"locked", 0, 0, 0, drm_ram_used);
DRM_SYSCTL_PRINT("\n");
for (pt = drm_mem_stats; pt->name; pt++) {
DRM_SYSCTL_PRINT("%-9.9s %5d %5d %4d %10lu %10lu | %6d %10ld\n",
pt->name,
pt->succeed_count,
pt->free_count,
pt->fail_count,
pt->bytes_allocated,
pt->bytes_freed,
pt->succeed_count - pt->free_count,
(long)pt->bytes_allocated
- (long)pt->bytes_freed);
}
SYSCTL_OUT(req, "", 1);
return 0;
}
int drm_mem_info SYSCTL_HANDLER_ARGS
{
int ret;
simple_lock(&drm_mem_lock);
ret = _drm_mem_info(oidp, arg1, arg2, req);
simple_unlock(&drm_mem_lock);
return ret;
}
void *drm_alloc(size_t size, int area)
{
void *pt;
if (!size) {
DRM_MEM_ERROR(area, "Allocating 0 bytes\n");
return NULL;
}
if (!(pt = malloc(size, M_DRM, M_NOWAIT))) {
simple_lock(&drm_mem_lock);
++drm_mem_stats[area].fail_count;
simple_unlock(&drm_mem_lock);
return NULL;
}
simple_lock(&drm_mem_lock);
++drm_mem_stats[area].succeed_count;
drm_mem_stats[area].bytes_allocated += size;
simple_unlock(&drm_mem_lock);
return pt;
}
void *drm_realloc(void *oldpt, size_t oldsize, size_t size, int area)
{
void *pt;
if (!(pt = drm_alloc(size, area))) return NULL;
if (oldpt && oldsize) {
memcpy(pt, oldpt, oldsize);
drm_free(oldpt, oldsize, area);
}
return pt;
}
char *drm_strdup(const char *s, int area)
{
char *pt;
int length = s ? strlen(s) : 0;
if (!(pt = drm_alloc(length+1, area))) return NULL;
strcpy(pt, s);
return pt;
}
void drm_strfree(char *s, int area)
{
unsigned int size;
if (!s) return;
size = 1 + (s ? strlen(s) : 0);
drm_free((void *)s, size, area);
}
void drm_free(void *pt, size_t size, int area)
{
int alloc_count;
int free_count;
if (!pt) DRM_MEM_ERROR(area, "Attempt to free NULL pointer\n");
else free(pt, M_DRM);
simple_lock(&drm_mem_lock);
drm_mem_stats[area].bytes_freed += size;
free_count = ++drm_mem_stats[area].free_count;
alloc_count = drm_mem_stats[area].succeed_count;
simple_unlock(&drm_mem_lock);
if (free_count > alloc_count) {
DRM_MEM_ERROR(area, "Excess frees: %d frees, %d allocs\n",
free_count, alloc_count);
}
}
unsigned long drm_alloc_pages(int order, int area)
{
vm_offset_t address;
unsigned long bytes = PAGE_SIZE << order;
unsigned long addr;
unsigned int sz;
simple_lock(&drm_mem_lock);
if (drm_ram_used > +(DRM_RAM_PERCENT * drm_ram_available) / 100) {
simple_unlock(&drm_mem_lock);
return 0;
}
simple_unlock(&drm_mem_lock);
address = (vm_offset_t) contigmalloc(1<<order, M_DRM, M_WAITOK, 0, ~0, 1, 0);
if (!address) {
simple_lock(&drm_mem_lock);
++drm_mem_stats[area].fail_count;
simple_unlock(&drm_mem_lock);
return 0;
}
simple_lock(&drm_mem_lock);
++drm_mem_stats[area].succeed_count;
drm_mem_stats[area].bytes_allocated += bytes;
drm_ram_used += bytes;
simple_unlock(&drm_mem_lock);
/* Zero outside the lock */
memset((void *)address, 0, bytes);
/* Reserve */
for (addr = address, sz = bytes;
sz > 0;
addr += PAGE_SIZE, sz -= PAGE_SIZE) {
/* mem_map_reserve(MAP_NR(addr));*/
}
return address;
}
void drm_free_pages(unsigned long address, int order, int area)
{
unsigned long bytes = PAGE_SIZE << order;
int alloc_count;
int free_count;
unsigned long addr;
unsigned int sz;
if (!address) {
DRM_MEM_ERROR(area, "Attempt to free address 0\n");
} else {
/* Unreserve */
for (addr = address, sz = bytes;
sz > 0;
addr += PAGE_SIZE, sz -= PAGE_SIZE) {
/* mem_map_unreserve(MAP_NR(addr));*/
}
contigfree((void *) address, bytes, M_DRM);
}
simple_lock(&drm_mem_lock);
free_count = ++drm_mem_stats[area].free_count;
alloc_count = drm_mem_stats[area].succeed_count;
drm_mem_stats[area].bytes_freed += bytes;
drm_ram_used -= bytes;
simple_unlock(&drm_mem_lock);
if (free_count > alloc_count) {
DRM_MEM_ERROR(area,
"Excess frees: %d frees, %d allocs\n",
free_count, alloc_count);
}
}
void *drm_ioremap(unsigned long offset, unsigned long size)
{
void *pt;
if (!size) {
DRM_MEM_ERROR(DRM_MEM_MAPPINGS,
"Mapping 0 bytes at 0x%08lx\n", offset);
return NULL;
}
if (!(pt = pmap_mapdev(offset, size))) {
simple_lock(&drm_mem_lock);
++drm_mem_stats[DRM_MEM_MAPPINGS].fail_count;
simple_unlock(&drm_mem_lock);
return NULL;
}
simple_lock(&drm_mem_lock);
++drm_mem_stats[DRM_MEM_MAPPINGS].succeed_count;
drm_mem_stats[DRM_MEM_MAPPINGS].bytes_allocated += size;
simple_unlock(&drm_mem_lock);
return pt;
}
void drm_ioremapfree(void *pt, unsigned long size)
{
int alloc_count;
int free_count;
if (!pt)
DRM_MEM_ERROR(DRM_MEM_MAPPINGS,
"Attempt to free NULL pointer\n");
else
pmap_unmapdev((vm_offset_t) pt, size);
simple_lock(&drm_mem_lock);
drm_mem_stats[DRM_MEM_MAPPINGS].bytes_freed += size;
free_count = ++drm_mem_stats[DRM_MEM_MAPPINGS].free_count;
alloc_count = drm_mem_stats[DRM_MEM_MAPPINGS].succeed_count;
simple_unlock(&drm_mem_lock);
if (free_count > alloc_count) {
DRM_MEM_ERROR(DRM_MEM_MAPPINGS,
"Excess frees: %d frees, %d allocs\n",
free_count, alloc_count);
}
}
#ifdef DRM_AGP
void *drm_alloc_agp(int pages, u_int32_t type)
{
device_t dev = agp_find_device();
void *handle;
if (!dev)
return NULL;
if (!pages) {
DRM_MEM_ERROR(DRM_MEM_TOTALAGP, "Allocating 0 pages\n");
return NULL;
}
if ((handle = agp_alloc_memory(dev, type, pages << AGP_PAGE_SHIFT))) {
simple_lock(&drm_mem_lock);
++drm_mem_stats[DRM_MEM_TOTALAGP].succeed_count;
drm_mem_stats[DRM_MEM_TOTALAGP].bytes_allocated
+= pages << PAGE_SHIFT;
simple_unlock(&drm_mem_lock);
return handle;
}
simple_lock(&drm_mem_lock);
++drm_mem_stats[DRM_MEM_TOTALAGP].fail_count;
simple_unlock(&drm_mem_lock);
return NULL;
}
int drm_free_agp(void *handle, int pages)
{
device_t dev = agp_find_device();
int alloc_count;
int free_count;
int retval = EINVAL;
if (!dev)
return EINVAL;
if (!handle) {
DRM_MEM_ERROR(DRM_MEM_TOTALAGP,
"Attempt to free NULL AGP handle\n");
return retval;
}
agp_free_memory(dev, handle);
simple_lock(&drm_mem_lock);
free_count = ++drm_mem_stats[DRM_MEM_TOTALAGP].free_count;
alloc_count = drm_mem_stats[DRM_MEM_TOTALAGP].succeed_count;
drm_mem_stats[DRM_MEM_TOTALAGP].bytes_freed
+= pages << PAGE_SHIFT;
simple_unlock(&drm_mem_lock);
if (free_count > alloc_count) {
DRM_MEM_ERROR(DRM_MEM_TOTALAGP,
"Excess frees: %d frees, %d allocs\n",
free_count, alloc_count);
}
return 0;
}
int drm_bind_agp(void *handle, unsigned int start)
{
device_t dev = agp_find_device();
int retcode = EINVAL;
struct agp_memory_info info;
DRM_DEBUG("drm_bind_agp called\n");
if (!dev)
return EINVAL;
if (!handle) {
DRM_MEM_ERROR(DRM_MEM_BOUNDAGP,
"Attempt to bind NULL AGP handle\n");
return retcode;
}
if (!(retcode = agp_bind_memory(dev, handle,
start << AGP_PAGE_SHIFT))) {
simple_lock(&drm_mem_lock);
++drm_mem_stats[DRM_MEM_BOUNDAGP].succeed_count;
agp_memory_info(dev, handle, &info);
drm_mem_stats[DRM_MEM_BOUNDAGP].bytes_allocated
+= info.ami_size;
simple_unlock(&drm_mem_lock);
DRM_DEBUG("drm_agp.bind_memory: retcode %d\n", retcode);
return retcode;
}
simple_lock(&drm_mem_lock);
++drm_mem_stats[DRM_MEM_BOUNDAGP].fail_count;
simple_unlock(&drm_mem_lock);
return retcode;
}
int drm_unbind_agp(void *handle)
{
device_t dev = agp_find_device();
int alloc_count;
int free_count;
int retcode = EINVAL;
struct agp_memory_info info;
if (!dev)
return EINVAL;
if (!handle) {
DRM_MEM_ERROR(DRM_MEM_BOUNDAGP,
"Attempt to unbind NULL AGP handle\n");
return retcode;
}
agp_memory_info(dev, handle, &info);
if ((retcode = agp_unbind_memory(dev, handle)))
return retcode;
simple_lock(&drm_mem_lock);
free_count = ++drm_mem_stats[DRM_MEM_BOUNDAGP].free_count;
alloc_count = drm_mem_stats[DRM_MEM_BOUNDAGP].succeed_count;
drm_mem_stats[DRM_MEM_BOUNDAGP].bytes_freed += info.ami_size;
simple_unlock(&drm_mem_lock);
if (free_count > alloc_count) {
DRM_MEM_ERROR(DRM_MEM_BOUNDAGP,
"Excess frees: %d frees, %d allocs\n",
free_count, alloc_count);
}
return retcode;
}
#endif