mesa-drm/shared-core/nouveau_object.c
Ben Skeggs 0c34d0f31a Leave the bottom 64kb of RAMIN untouched.
The binary driver will screw up either it's init or shutdown, leaving the
screen(s) in an unusable state without this.  Something important in there?
2006-11-06 05:46:03 +11:00

627 lines
17 KiB
C

/*
* Copyright (C) 2006 Ben Skeggs.
*
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial
* portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
* LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
* OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
* WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
*/
/*
* Authors:
* Ben Skeggs <darktama@iinet.net.au>
*/
#include "drmP.h"
#include "drm.h"
#include "nouveau_drv.h"
#include "nouveau_drm.h"
/* TODO
* - Check object class, deny unsafe objects (add card-specific versioning?)
* - Get rid of DMA object creation, this should be wrapped by MM routines.
*/
static void nouveau_object_link(drm_device_t *dev, int fifo_num,
struct nouveau_object *obj)
{
drm_nouveau_private_t *dev_priv=dev->dev_private;
struct nouveau_fifo *fifo = &dev_priv->fifos[fifo_num];
if (!fifo->objs) {
fifo->objs = obj;
return;
}
obj->prev = NULL;
obj->next = fifo->objs;
fifo->objs->prev = obj;
fifo->objs = obj;
}
static void nouveau_object_unlink(drm_device_t *dev, int fifo_num,
struct nouveau_object *obj)
{
drm_nouveau_private_t *dev_priv=dev->dev_private;
struct nouveau_fifo *fifo = &dev_priv->fifos[fifo_num];
if (obj->prev == NULL) {
if (obj->next)
obj->next->prev = NULL;
fifo->objs = obj->next;
} else if (obj->next == NULL) {
if (obj->prev)
obj->prev->next = NULL;
} else {
obj->prev->next = obj->next;
obj->next->prev = obj->prev;
}
}
static struct nouveau_object *
nouveau_object_handle_find(drm_device_t *dev, int fifo_num, uint32_t handle)
{
drm_nouveau_private_t *dev_priv=dev->dev_private;
struct nouveau_fifo *fifo = &dev_priv->fifos[fifo_num];
struct nouveau_object *obj = fifo->objs;
if (!handle)
return NULL;
DRM_DEBUG("Looking for handle 0x%08x\n", handle);
while (obj) {
if (obj->handle == handle)
return obj;
obj = obj->next;
}
DRM_DEBUG("...couldn't find handle\n");
return NULL;
}
/* NVidia uses context objects to drive drawing operations.
Context objects can be selected into 8 subchannels in the FIFO,
and then used via DMA command buffers.
A context object is referenced by a user defined handle (CARD32). The HW
looks up graphics objects in a hash table in the instance RAM.
An entry in the hash table consists of 2 CARD32. The first CARD32 contains
the handle, the second one a bitfield, that contains the address of the
object in instance RAM.
The format of the second CARD32 seems to be:
NV4 to NV30:
15: 0 instance_addr >> 4
17:16 engine (here uses 1 = graphics)
28:24 channel id (here uses 0)
31 valid (use 1)
NV40:
15: 0 instance_addr >> 4 (maybe 19-0)
21:20 engine (here uses 1 = graphics)
I'm unsure about the other bits, but using 0 seems to work.
The key into the hash table depends on the object handle and channel id and
is given as:
*/
static uint32_t nouveau_handle_hash(drm_device_t* dev, uint32_t handle,
int fifo)
{
drm_nouveau_private_t *dev_priv=dev->dev_private;
struct nouveau_object_store *objs=&dev_priv->objs;
uint32_t hash = 0;
int i;
for (i=32;i>0;i-=objs->ht_bits) {
hash ^= (handle & ((1 << objs->ht_bits) - 1));
handle >>= objs->ht_bits;
}
hash ^= fifo << (objs->ht_bits - 4);
return hash << 3;
}
static int nouveau_hash_table_insert(drm_device_t* dev, int fifo,
struct nouveau_object *obj)
{
drm_nouveau_private_t *dev_priv=dev->dev_private;
struct nouveau_object_store *objs=&dev_priv->objs;
int ht_base = NV_RAMIN + objs->ht_base;
int ht_end = ht_base + objs->ht_size;
int o_ofs, ofs;
o_ofs = ofs = nouveau_handle_hash(dev, obj->handle, fifo);
while (NV_READ(ht_base + ofs)) {
ofs += 8;
if (ofs == ht_end) ofs = ht_base;
if (ofs == o_ofs) {
DRM_ERROR("no free hash table entries\n");
return 1;
}
}
ofs += ht_base;
DRM_DEBUG("Channel %d - Handle 0x%08x at 0x%08x\n",
fifo, obj->handle, ofs);
NV_WRITE(NV_RAMHT_HANDLE_OFFSET + ofs, obj->handle);
if (dev_priv->card_type >= NV_40)
NV_WRITE(NV_RAMHT_CONTEXT_OFFSET + ofs,
(fifo << NV40_RAMHT_CONTEXT_CHANNEL_SHIFT) |
(obj->engine << NV40_RAMHT_CONTEXT_ENGINE_SHIFT) |
(obj->instance>>4)
);
else
NV_WRITE(NV_RAMHT_CONTEXT_OFFSET + ofs,
NV_RAMHT_CONTEXT_VALID |
(fifo << NV_RAMHT_CONTEXT_CHANNEL_SHIFT) |
(obj->engine << NV_RAMHT_CONTEXT_ENGINE_SHIFT) |
(obj->instance>>4)
);
obj->ht_loc = ofs;
return 0;
}
static void nouveau_hash_table_remove(drm_device_t* dev,
struct nouveau_object *obj)
{
drm_nouveau_private_t *dev_priv = dev->dev_private;
DRM_DEBUG("Remove handle 0x%08x at 0x%08x from HT\n",
obj->handle, obj->ht_loc);
if (obj->ht_loc) {
DRM_DEBUG("... HT entry was: 0x%08x/0x%08x\n",
NV_READ(obj->ht_loc), NV_READ(obj->ht_loc+4));
NV_WRITE(obj->ht_loc , 0x00000000);
NV_WRITE(obj->ht_loc+4, 0x00000000);
}
}
static struct nouveau_object *nouveau_instance_alloc(drm_device_t* dev)
{
drm_nouveau_private_t *dev_priv=dev->dev_private;
struct nouveau_object_store *objs=&dev_priv->objs;
struct nouveau_object *obj;
int instance = -1;
int i = 0, j = 0;
/* Allocate a block of instance RAM */
if (!objs->free_instance) {
DRM_ERROR("no free instance ram\n");
return NULL;
}
for (i=0;i<(objs->num_instance>>5);i++) {
if (objs->inst_bmap[i] == ~0) continue;
for (j=0;j<32;j++) {
if (!(objs->inst_bmap[i] & (1<<j))) {
instance = (i<<5) + j;
break;
}
}
if (instance != -1) break;
}
DRM_DEBUG("alloced instance %d (slot %d/%d)\n", instance, i, j);
/* Create object struct */
obj = drm_calloc(1, sizeof(struct nouveau_object), DRM_MEM_DRIVER);
if (!obj) {
DRM_ERROR("couldn't alloc memory for object\n");
return NULL;
}
obj->instance = objs->first_instance;
obj->instance += (instance << (dev_priv->card_type >= NV_40 ? 5 : 4));
DRM_DEBUG("instance address is 0x%08x\n", instance);
/* Mark instance slot as used */
objs->inst_bmap[i] |= (1 << j);
objs->free_instance--;
return obj;
}
static void nouveau_object_instance_free(drm_device_t *dev,
struct nouveau_object *obj)
{
drm_nouveau_private_t *dev_priv=dev->dev_private;
struct nouveau_object_store *objs=&dev_priv->objs;
int count, i;
uint32_t be, bb;
if (dev_priv->card_type >= NV_40)
count = 8;
else
count = 4;
DRM_DEBUG("Instance entry for 0x%08x"
"(engine %d, class 0x%x) before destroy:\n",
obj->handle, obj->engine, obj->class);
for (i=0;i<count;i++)
DRM_DEBUG(" +0x%02x: 0x%08x\n", (i*4),
NV_READ(NV_RAMIN + obj->instance + (i*4)));
/* Clean RAMIN entry */
for (i=0;i<count;i++)
NV_WRITE(NV_RAMIN + obj->instance + (i*4), 0x00000000);
/* Mark instance as free */
obj->instance -= objs->first_instance;
obj->instance >>= (dev_priv->card_type >=NV_40 ? 5 : 4);
be = obj->instance / 32;
bb = obj->instance % 32;
objs->inst_bmap[be] &= ~(1<<bb);
objs->free_instance++;
}
/* Where is the hash table located:
Base address and size can be calculated from this register:
ht_base = 0x1000 * GetBitField (pNv->PFIFO[0x0210/4],8:4);
ht_size = 0x1000 << GetBitField (pNv->PFIFO[0x0210/4],17:16);
and the hash table will be located between address PRAMIN + ht_base and
PRAMIN + ht_base + ht_size. Each hash table entry has two longwords.
*/
void nouveau_hash_table_init(drm_device_t* dev)
{
drm_nouveau_private_t *dev_priv=dev->dev_private;
int i;
dev_priv->objs.ht_bits = 9;
dev_priv->objs.ht_base = 0x10000;
dev_priv->objs.ht_size = (1 << dev_priv->objs.ht_bits);
dev_priv->objs.first_instance = 0x13000;
dev_priv->objs.free_instance = 1024; /*FIXME*/
dev_priv->objs.num_instance = 1024; /*FIXME*/
dev_priv->objs.inst_bmap = drm_calloc
(1, dev_priv->objs.num_instance/32, DRM_MEM_DRIVER);
/* clear all of RAMIN
* NOTE: except the bottom 0x10000 bytes, the binary driver doesn't
* like this and will die either sometime during init, or during
* shutdown - leaving the screen in an unusable state...
*/
for (i=0x00710000; i<0x00800000; i+=4)
NV_WRITE(i, 0x00000000);
}
/*
DMA objects are used to reference a piece of memory in the
framebuffer, PCI or AGP address space. Each object is 16 bytes big
and looks as follows:
entry[0]
11:0 class (seems like I can always use 0 here)
12 page table present?
13 page entry linear?
15:14 access: 0 rw, 1 ro, 2 wo
17:16 target: 0 NV memory, 1 NV memory tiled, 2 PCI, 3 AGP
31:20 dma adjust (bits 0-11 of the address)
entry[1]
dma limit
entry[2]
1 0 readonly, 1 readwrite
31:12 dma frame address (bits 12-31 of the address)
Non linear page tables seem to need a list of frame addresses afterwards,
the rivatv project has some info on this.
The method below creates a DMA object in instance RAM and returns a handle
to it that can be used to set up context objects.
*/
struct nouveau_object *nouveau_dma_object_create(drm_device_t* dev,
uint32_t offset, uint32_t size,
int access, uint32_t target)
{
drm_nouveau_private_t *dev_priv=dev->dev_private;
struct nouveau_object *obj;
uint32_t frame, adjust;
DRM_DEBUG("offset:0x%08x, size:0x%08x, target:%d, access:%d\n",
offset, size, target, access);
frame = offset & ~0x00000FFF;
adjust = offset & 0x00000FFF;
obj = nouveau_instance_alloc(dev);
if (!obj) {
DRM_ERROR("couldn't allocate DMA object\n");
return obj;
}
obj->engine = 0;
obj->class = 0;
NV_WRITE(NV_RAMIN + obj->instance + 0, ((1<<12)
| (1<<13)
| (adjust<<20)
| (access<<14)
| (target<<16)
| 0x3D /* DMA_IN_MEMORY */)
);
NV_WRITE(NV_RAMIN + obj->instance + 4,
size - 1);
NV_WRITE(NV_RAMIN + obj->instance + 8,
frame | ((access != NV_DMA_ACCESS_RO) ? (1<<1) : 0));
/* I don't actually know what this is, the DMA objects I see
* in renouveau dumps usually have this as the same as +8
*/
NV_WRITE(NV_RAMIN + obj->instance + 12,
frame | ((access != NV_DMA_ACCESS_RO) ? (1<<1) : 0));
return obj;
}
/* Context objects in the instance RAM have the following structure.
* On NV40 they are 32 byte long, on NV30 and smaller 16 bytes.
NV4 - NV30:
entry[0]
11:0 class
12 chroma key enable
13 user clip enable
14 swizzle enable
17:15 patch config:
scrcopy_and, rop_and, blend_and, scrcopy, srccopy_pre, blend_pre
18 synchronize enable
19 endian: 1 big, 0 little
21:20 dither mode
23 single step enable
24 patch status: 0 invalid, 1 valid
25 context_surface 0: 1 valid
26 context surface 1: 1 valid
27 context pattern: 1 valid
28 context rop: 1 valid
29,30 context beta, beta4
entry[1]
7:0 mono format
15:8 color format
31:16 notify instance address
entry[2]
15:0 dma 0 instance address
31:16 dma 1 instance address
entry[3]
dma method traps
NV40:
No idea what the exact format is. Here's what can be deducted:
entry[0]:
11:0 class (maybe uses more bits here?)
17 user clip enable
21:19 patch config
25 patch status valid ?
entry[1]:
15:0 DMA notifier (maybe 20:0)
entry[2]:
15:0 DMA 0 instance (maybe 20:0)
24 big endian
entry[3]:
15:0 DMA 1 instance (maybe 20:0)
entry[4]:
entry[5]:
set to 0?
*/
static struct nouveau_object *nouveau_context_object_create(drm_device_t* dev,
int class, uint32_t flags,
struct nouveau_object *dma0,
struct nouveau_object *dma1,
struct nouveau_object *dma_notifier)
{
drm_nouveau_private_t *dev_priv=dev->dev_private;
struct nouveau_object *obj;
uint32_t d0, d1, dn;
uint32_t flags0,flags1,flags2;
flags0=0;flags1=0;flags2=0;
if (dev_priv->card_type >= NV_40) {
if (flags & NV_DMA_CONTEXT_FLAGS_PATCH_ROP_AND)
flags0 |= 0x02080000;
else if (flags & NV_DMA_CONTEXT_FLAGS_PATCH_SRCCOPY)
flags0 |= 0x02080000;
if (flags & NV_DMA_CONTEXT_FLAGS_CLIP_ENABLE)
flags0 |= 0x00020000;
#ifdef __BIG_ENDIAN
if (flags & NV_DMA_CONTEXT_FLAGS_MONO)
flags1 |= 0x01000000;
flags2 |= 0x01000000;
#else
if (flags & NV_DMA_CONTEXT_FLAGS_MONO)
flags1 |= 0x02000000;
#endif
} else {
if (flags & NV_DMA_CONTEXT_FLAGS_PATCH_ROP_AND)
flags0 |= 0x01008000;
else if (flags & NV_DMA_CONTEXT_FLAGS_PATCH_SRCCOPY)
flags0 |= 0x01018000;
if (flags & NV_DMA_CONTEXT_FLAGS_CLIP_ENABLE)
flags0 |= 0x00002000;
#ifdef __BIG_ENDIAN
flags0 |= 0x00080000;
if (flags & NV_DMA_CONTEXT_FLAGS_MONO)
flags1 |= 0x00000001;
#else
if (flags & NV_DMA_CONTEXT_FLAGS_MONO)
flags1 |= 0x00000002;
#endif
}
DRM_DEBUG("class=%x, dma0=%08x, dma1=%08x, dman=%08x\n",
class,
dma0 ? dma0->handle : 0,
dma1 ? dma1->handle : 0,
dma_notifier ? dma_notifier->handle : 0);
obj = nouveau_instance_alloc(dev);
if (!obj) {
DRM_ERROR("couldn't allocate context object\n");
return obj;
}
obj->engine = 1;
obj->class = class;
d0 = dma0 ? (dma0->instance >> 4) : 0;
d1 = dma1 ? (dma1->instance >> 4) : 0;
dn = dma_notifier ? (dma_notifier->instance >> 4) : 0;
if (dev_priv->card_type >= NV_40) {
NV_WRITE(NV_RAMIN + obj->instance + 0, class | flags0);
NV_WRITE(NV_RAMIN + obj->instance + 4, dn | flags1);
NV_WRITE(NV_RAMIN + obj->instance + 8, d0 | flags2);
NV_WRITE(NV_RAMIN + obj->instance + 12, d1);
NV_WRITE(NV_RAMIN + obj->instance + 16, 0x00000000);
NV_WRITE(NV_RAMIN + obj->instance + 20, 0x00000000);
NV_WRITE(NV_RAMIN + obj->instance + 24, 0x00000000);
NV_WRITE(NV_RAMIN + obj->instance + 28, 0x00000000);
} else {
NV_WRITE(NV_RAMIN + obj->instance + 0, class | flags0);
NV_WRITE(NV_RAMIN + obj->instance + 4, (dn << 16) | flags1);
NV_WRITE(NV_RAMIN + obj->instance + 8, d0 | (d1 << 16));
NV_WRITE(NV_RAMIN + obj->instance + 12, 0);
}
return obj;
}
static void
nouveau_object_free(drm_device_t *dev, int fifo_num, struct nouveau_object *obj)
{
nouveau_object_unlink(dev, fifo_num, obj);
nouveau_object_instance_free(dev, obj);
nouveau_hash_table_remove(dev, obj);
drm_free(obj, sizeof(struct nouveau_object), DRM_MEM_DRIVER);
return;
}
void nouveau_object_cleanup(drm_device_t *dev, DRMFILE filp)
{
drm_nouveau_private_t *dev_priv=dev->dev_private;
int fifo;
fifo = nouveau_fifo_id_get(dev, filp);
if (fifo == -1)
return;
while (dev_priv->fifos[fifo].objs)
nouveau_object_free(dev, fifo, dev_priv->fifos[fifo].objs);
}
int nouveau_ioctl_object_init(DRM_IOCTL_ARGS)
{
DRM_DEVICE;
drm_nouveau_object_init_t init;
struct nouveau_object *obj, *dma0, *dma1, *dman;
int fifo;
fifo = nouveau_fifo_id_get(dev, filp);
DRM_COPY_FROM_USER_IOCTL(init, (drm_nouveau_object_init_t __user *)
data, sizeof(init));
//FIXME: check args, only allow trusted objects to be created
if (nouveau_object_handle_find(dev, fifo, init.handle)) {
DRM_ERROR("Channel %d: handle 0x%08x already exists\n",
fifo, init.handle);
return DRM_ERR(EINVAL);
}
dma0 = nouveau_object_handle_find(dev, fifo, init.dma0);
if (init.dma0 && !dma0) {
DRM_ERROR("context dma0 - invalid handle 0x%08x\n", init.dma0);
return DRM_ERR(EINVAL);
}
dma1 = nouveau_object_handle_find(dev, fifo, init.dma1);
if (init.dma1 && !dma1) {
DRM_ERROR("context dma1 - invalid handle 0x%08x\n", init.dma0);
return DRM_ERR(EINVAL);
}
dman = nouveau_object_handle_find(dev, fifo, init.dma_notifier);
if (init.dma_notifier && !dman) {
DRM_ERROR("context dman - invalid handle 0x%08x\n",
init.dma_notifier);
return DRM_ERR(EINVAL);
}
obj = nouveau_context_object_create(dev, init.class, init.flags,
dma0, dma1, dman);
if (!obj)
return DRM_ERR(ENOMEM);
obj->handle = init.handle;
if (nouveau_hash_table_insert(dev, fifo, obj)) {
nouveau_object_free(dev, fifo, obj);
return DRM_ERR(ENOMEM);
}
nouveau_object_link(dev, fifo, obj);
return 0;
}
int nouveau_ioctl_dma_object_init(DRM_IOCTL_ARGS)
{
DRM_DEVICE;
drm_nouveau_dma_object_init_t init;
struct nouveau_object *obj;
int fifo;
fifo = nouveau_fifo_id_get(dev, filp);
DRM_COPY_FROM_USER_IOCTL(init, (drm_nouveau_dma_object_init_t __user *)
data, sizeof(init));
if (nouveau_object_handle_find(dev, fifo, init.handle)) {
DRM_ERROR("Channel %d: handle 0x%08x already exists\n",
fifo, init.handle);
return DRM_ERR(EINVAL);
}
obj = nouveau_dma_object_create(dev, init.offset, init.size,
init.access, init.target);
if (!obj)
return DRM_ERR(ENOMEM);
obj->handle = init.handle;
if (nouveau_hash_table_insert(dev, fifo, obj)) {
nouveau_object_free(dev, fifo, obj);
return DRM_ERR(ENOMEM);
}
nouveau_object_link(dev, fifo, obj);
return 0;
}