libinput/src/filter.c
Peter Hutterer 0926f570c4 tablet: make the cursor/lens tool behave like a 1000dpi mouse
The current code tried to emulate the relative motion to be equivalent to the
absolute motion, except in screen coordinates. This is way too slow for the
cursor tool that we want to behave like a mouse.

Tablets have high resolution (e.g. an Intuos 4 is a 5080dpi mouse) and that
motion is way too fast to be usable. Scale it down to match a 1000dpi device
instead. Since the cursor and lens tool are still high precision devices leave
them in a flat acceleration profile without actual acceleration.

For the stylus-like devices leave the current accel, pointer acceleration on a
stylus is hard to handle.

This also adds the missing bits for actually using the speed factor set
through the config interface.

Signed-off-by: Peter Hutterer <peter.hutterer@who-t.net>
Reviewed-by: Jason Gerecke <jason.gerecke@wacom.com>
Reviewed-by: Carlos Garnacho <carlosg@gnome.org>
2016-06-28 11:28:49 +10:00

1118 lines
30 KiB
C

/*
* Copyright © 2006-2009 Simon Thum
* Copyright © 2012 Jonas Ådahl
* Copyright © 2014-2015 Red Hat, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#include "config.h"
#include <assert.h>
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <limits.h>
#include <math.h>
#include "filter.h"
#include "libinput-util.h"
#include "filter-private.h"
/* Once normalized, touchpads see the same acceleration as mice. that is
* technically correct but subjectively wrong, we expect a touchpad to be a
* lot slower than a mouse. Apply a magic factor to slow down all movements
*/
#define TP_MAGIC_SLOWDOWN 0.4 /* unitless factor */
/* Convert speed/velocity from units/us to units/ms */
static inline double
v_us2ms(double units_per_us)
{
return units_per_us * 1000.0;
}
/* Convert speed/velocity from units/ms to units/us */
static inline double
v_ms2us(double units_per_ms)
{
return units_per_ms/1000.0;
}
struct normalized_coords
filter_dispatch(struct motion_filter *filter,
const struct normalized_coords *unaccelerated,
void *data, uint64_t time)
{
return filter->interface->filter(filter, unaccelerated, data, time);
}
struct normalized_coords
filter_dispatch_constant(struct motion_filter *filter,
const struct normalized_coords *unaccelerated,
void *data, uint64_t time)
{
return filter->interface->filter_constant(filter, unaccelerated, data, time);
}
void
filter_restart(struct motion_filter *filter,
void *data, uint64_t time)
{
if (filter->interface->restart)
filter->interface->restart(filter, data, time);
}
void
filter_destroy(struct motion_filter *filter)
{
if (!filter || !filter->interface->destroy)
return;
filter->interface->destroy(filter);
}
bool
filter_set_speed(struct motion_filter *filter,
double speed_adjustment)
{
return filter->interface->set_speed(filter, speed_adjustment);
}
double
filter_get_speed(struct motion_filter *filter)
{
return filter->speed_adjustment;
}
enum libinput_config_accel_profile
filter_get_type(struct motion_filter *filter)
{
return filter->interface->type;
}
/*
* Default parameters for pointer acceleration profiles.
*/
#define DEFAULT_THRESHOLD v_ms2us(0.4) /* in units/us */
#define MINIMUM_THRESHOLD v_ms2us(0.2) /* in units/us */
#define DEFAULT_ACCELERATION 2.0 /* unitless factor */
#define DEFAULT_INCLINE 1.1 /* unitless factor */
/* for the Lenovo x230 custom accel. do not touch */
#define X230_THRESHOLD v_ms2us(0.4) /* in units/us */
#define X230_ACCELERATION 2.0 /* unitless factor */
#define X230_INCLINE 1.1 /* unitless factor */
#define X230_MAGIC_SLOWDOWN 0.4 /* unitless */
#define X230_TP_MAGIC_LOW_RES_FACTOR 4.0 /* unitless */
/*
* Pointer acceleration filter constants
*/
#define MAX_VELOCITY_DIFF v_ms2us(1) /* units/us */
#define MOTION_TIMEOUT ms2us(1000)
#define NUM_POINTER_TRACKERS 16
struct pointer_tracker {
struct normalized_coords delta; /* delta to most recent event */
uint64_t time; /* us */
int dir;
};
struct pointer_accelerator {
struct motion_filter base;
accel_profile_func_t profile;
double velocity; /* units/us */
double last_velocity; /* units/us */
struct pointer_tracker *trackers;
int cur_tracker;
double threshold; /* units/us */
double accel; /* unitless factor */
double incline; /* incline of the function */
double dpi_factor;
};
struct pointer_accelerator_flat {
struct motion_filter base;
double factor;
double dpi_factor;
};
struct tablet_accelerator_flat {
struct motion_filter base;
double factor;
int xres, yres;
double xres_scale, /* 1000dpi : tablet res */
yres_scale; /* 1000dpi : tablet res */
};
static void
feed_trackers(struct pointer_accelerator *accel,
const struct normalized_coords *delta,
uint64_t time)
{
int i, current;
struct pointer_tracker *trackers = accel->trackers;
for (i = 0; i < NUM_POINTER_TRACKERS; i++) {
trackers[i].delta.x += delta->x;
trackers[i].delta.y += delta->y;
}
current = (accel->cur_tracker + 1) % NUM_POINTER_TRACKERS;
accel->cur_tracker = current;
trackers[current].delta.x = 0.0;
trackers[current].delta.y = 0.0;
trackers[current].time = time;
trackers[current].dir = normalized_get_direction(*delta);
}
static struct pointer_tracker *
tracker_by_offset(struct pointer_accelerator *accel, unsigned int offset)
{
unsigned int index =
(accel->cur_tracker + NUM_POINTER_TRACKERS - offset)
% NUM_POINTER_TRACKERS;
return &accel->trackers[index];
}
static double
calculate_tracker_velocity(struct pointer_tracker *tracker, uint64_t time)
{
double tdelta = time - tracker->time + 1;
return normalized_length(tracker->delta) / tdelta; /* units/us */
}
static inline double
calculate_velocity_after_timeout(struct pointer_tracker *tracker)
{
/* First movement after timeout needs special handling.
*
* When we trigger the timeout, the last event is too far in the
* past to use it for velocity calculation across multiple tracker
* values.
*
* Use the motion timeout itself to calculate the speed rather than
* the last tracker time. This errs on the side of being too fast
* for really slow movements but provides much more useful initial
* movement in normal use-cases (pause, move, pause, move)
*/
return calculate_tracker_velocity(tracker,
tracker->time + MOTION_TIMEOUT);
}
static double
calculate_velocity(struct pointer_accelerator *accel, uint64_t time)
{
struct pointer_tracker *tracker;
double velocity;
double result = 0.0;
double initial_velocity = 0.0;
double velocity_diff;
unsigned int offset;
unsigned int dir = tracker_by_offset(accel, 0)->dir;
/* Find least recent vector within a timelimit, maximum velocity diff
* and direction threshold. */
for (offset = 1; offset < NUM_POINTER_TRACKERS; offset++) {
tracker = tracker_by_offset(accel, offset);
/* Stop if too far away in time */
if (time - tracker->time > MOTION_TIMEOUT ||
tracker->time > time) {
if (offset == 1)
result = calculate_velocity_after_timeout(tracker);
break;
}
velocity = calculate_tracker_velocity(tracker, time);
/* Stop if direction changed */
dir &= tracker->dir;
if (dir == 0) {
/* First movement after dirchange - velocity is that
* of the last movement */
if (offset == 1)
result = velocity;
break;
}
if (initial_velocity == 0.0) {
result = initial_velocity = velocity;
} else {
/* Stop if velocity differs too much from initial */
velocity_diff = fabs(initial_velocity - velocity);
if (velocity_diff > MAX_VELOCITY_DIFF)
break;
result = velocity;
}
}
return result; /* units/us */
}
static double
acceleration_profile(struct pointer_accelerator *accel,
void *data, double velocity, uint64_t time)
{
return accel->profile(&accel->base, data, velocity, time);
}
static double
calculate_acceleration(struct pointer_accelerator *accel,
void *data,
double velocity,
double last_velocity,
uint64_t time)
{
double factor;
/* Use Simpson's rule to calculate the avarage acceleration between
* the previous motion and the most recent. */
factor = acceleration_profile(accel, data, velocity, time);
factor += acceleration_profile(accel, data, last_velocity, time);
factor += 4.0 *
acceleration_profile(accel, data,
(last_velocity + velocity) / 2,
time);
factor = factor / 6.0;
return factor; /* unitless factor */
}
static inline double
calculate_acceleration_factor(struct pointer_accelerator *accel,
const struct normalized_coords *unaccelerated,
void *data,
uint64_t time)
{
double velocity; /* units/us */
double accel_factor;
feed_trackers(accel, unaccelerated, time);
velocity = calculate_velocity(accel, time);
accel_factor = calculate_acceleration(accel,
data,
velocity,
accel->last_velocity,
time);
accel->last_velocity = velocity;
return accel_factor;
}
static struct normalized_coords
accelerator_filter(struct motion_filter *filter,
const struct normalized_coords *unaccelerated,
void *data, uint64_t time)
{
struct pointer_accelerator *accel =
(struct pointer_accelerator *) filter;
double accel_value; /* unitless factor */
struct normalized_coords accelerated;
accel_value = calculate_acceleration_factor(accel,
unaccelerated,
data,
time);
accelerated.x = accel_value * unaccelerated->x;
accelerated.y = accel_value * unaccelerated->y;
return accelerated;
}
static struct normalized_coords
accelerator_filter_noop(struct motion_filter *filter,
const struct normalized_coords *unaccelerated,
void *data, uint64_t time)
{
return *unaccelerated;
}
static struct normalized_coords
accelerator_filter_low_dpi(struct motion_filter *filter,
const struct normalized_coords *unaccelerated,
void *data, uint64_t time)
{
struct pointer_accelerator *accel =
(struct pointer_accelerator *) filter;
double accel_value; /* unitless factor */
struct normalized_coords accelerated;
struct normalized_coords unnormalized;
double dpi_factor = accel->dpi_factor;
/* For low-dpi mice, use device units, everything else uses
1000dpi normalized */
dpi_factor = min(1.0, dpi_factor);
unnormalized.x = unaccelerated->x * dpi_factor;
unnormalized.y = unaccelerated->y * dpi_factor;
accel_value = calculate_acceleration_factor(accel,
&unnormalized,
data,
time);
accelerated.x = accel_value * unnormalized.x;
accelerated.y = accel_value * unnormalized.y;
return accelerated;
}
static struct normalized_coords
accelerator_filter_trackpoint(struct motion_filter *filter,
const struct normalized_coords *unaccelerated,
void *data, uint64_t time)
{
struct pointer_accelerator *accel =
(struct pointer_accelerator *) filter;
double accel_value; /* unitless factor */
struct normalized_coords accelerated;
struct normalized_coords unnormalized;
double dpi_factor = accel->dpi_factor;
/* trackpoints with a dpi factor have a const accel set, remove that
* and restore device units. The accel profile takes const accel
* into account */
dpi_factor = min(1.0, dpi_factor);
unnormalized.x = unaccelerated->x * dpi_factor;
unnormalized.y = unaccelerated->y * dpi_factor;
accel_value = calculate_acceleration_factor(accel,
&unnormalized,
data,
time);
accelerated.x = accel_value * unnormalized.x;
accelerated.y = accel_value * unnormalized.y;
return accelerated;
}
static struct normalized_coords
accelerator_filter_x230(struct motion_filter *filter,
const struct normalized_coords *unaccelerated,
void *data, uint64_t time)
{
struct pointer_accelerator *accel =
(struct pointer_accelerator *) filter;
double accel_factor; /* unitless factor */
struct normalized_coords accelerated;
double velocity; /* units/us */
feed_trackers(accel, unaccelerated, time);
velocity = calculate_velocity(accel, time);
accel_factor = calculate_acceleration(accel,
data,
velocity,
accel->last_velocity,
time);
accel->last_velocity = velocity;
accelerated.x = accel_factor * unaccelerated->x;
accelerated.y = accel_factor * unaccelerated->y;
return accelerated;
}
static struct normalized_coords
accelerator_filter_constant_x230(struct motion_filter *filter,
const struct normalized_coords *unaccelerated,
void *data, uint64_t time)
{
struct normalized_coords normalized;
const double factor =
X230_MAGIC_SLOWDOWN/X230_TP_MAGIC_LOW_RES_FACTOR;
normalized.x = factor * unaccelerated->x;
normalized.y = factor * unaccelerated->y;
return normalized;
}
static struct normalized_coords
touchpad_constant_filter(struct motion_filter *filter,
const struct normalized_coords *unaccelerated,
void *data, uint64_t time)
{
struct normalized_coords normalized;
normalized.x = TP_MAGIC_SLOWDOWN * unaccelerated->x;
normalized.y = TP_MAGIC_SLOWDOWN * unaccelerated->y;
return normalized;
}
static void
accelerator_restart(struct motion_filter *filter,
void *data,
uint64_t time)
{
struct pointer_accelerator *accel =
(struct pointer_accelerator *) filter;
unsigned int offset;
struct pointer_tracker *tracker;
for (offset = 1; offset < NUM_POINTER_TRACKERS; offset++) {
tracker = tracker_by_offset(accel, offset);
tracker->time = 0;
tracker->dir = 0;
tracker->delta.x = 0;
tracker->delta.y = 0;
}
tracker = tracker_by_offset(accel, 0);
tracker->time = time;
tracker->dir = UNDEFINED_DIRECTION;
}
static void
accelerator_destroy(struct motion_filter *filter)
{
struct pointer_accelerator *accel =
(struct pointer_accelerator *) filter;
free(accel->trackers);
free(accel);
}
static bool
accelerator_set_speed(struct motion_filter *filter,
double speed_adjustment)
{
struct pointer_accelerator *accel_filter =
(struct pointer_accelerator *)filter;
assert(speed_adjustment >= -1.0 && speed_adjustment <= 1.0);
/* Note: the numbers below are nothing but trial-and-error magic,
don't read more into them other than "they mostly worked ok" */
/* delay when accel kicks in */
accel_filter->threshold = DEFAULT_THRESHOLD -
v_ms2us(0.25) * speed_adjustment;
if (accel_filter->threshold < MINIMUM_THRESHOLD)
accel_filter->threshold = MINIMUM_THRESHOLD;
/* adjust max accel factor */
accel_filter->accel = DEFAULT_ACCELERATION + speed_adjustment * 1.5;
/* higher speed -> faster to reach max */
accel_filter->incline = DEFAULT_INCLINE + speed_adjustment * 0.75;
filter->speed_adjustment = speed_adjustment;
return true;
}
/**
* Custom acceleration function for mice < 1000dpi.
* At slow motion, a single device unit causes a one-pixel movement.
* The threshold/max accel depends on the DPI, the smaller the DPI the
* earlier we accelerate and the higher the maximum acceleration is. Result:
* at low speeds we get pixel-precision, at high speeds we get approx. the
* same movement as a high-dpi mouse.
*
* Note: data fed to this function is in device units, not normalized.
*/
double
pointer_accel_profile_linear_low_dpi(struct motion_filter *filter,
void *data,
double speed_in, /* in device units (units/us) */
uint64_t time)
{
struct pointer_accelerator *accel_filter =
(struct pointer_accelerator *)filter;
double max_accel = accel_filter->accel; /* unitless factor */
double threshold = accel_filter->threshold; /* units/us */
const double incline = accel_filter->incline;
double factor; /* unitless */
double dpi_factor = accel_filter->dpi_factor;
/* dpi_factor is always < 1.0, increase max_accel, reduce
the threshold so it kicks in earlier */
max_accel /= dpi_factor;
threshold *= dpi_factor;
/* see pointer_accel_profile_linear for a long description */
if (v_us2ms(speed_in) < 0.07)
factor = 10 * v_us2ms(speed_in) + 0.3;
else if (speed_in < threshold)
factor = 1;
else
factor = incline * v_us2ms(speed_in - threshold) + 1;
factor = min(max_accel, factor);
return factor;
}
double
pointer_accel_profile_linear(struct motion_filter *filter,
void *data,
double speed_in, /* 1000-dpi normalized */
uint64_t time)
{
struct pointer_accelerator *accel_filter =
(struct pointer_accelerator *)filter;
const double max_accel = accel_filter->accel; /* unitless factor */
const double threshold = accel_filter->threshold; /* units/us */
const double incline = accel_filter->incline;
double factor; /* unitless */
/*
Our acceleration function calculates a factor to accelerate input
deltas with. The function is a double incline with a plateau,
with a rough shape like this:
accel
factor
^
| /
| _____/
| /
|/
+-------------> speed in
The two inclines are linear functions in the form
y = ax + b
where y is speed_out
x is speed_in
a is the incline of acceleration
b is minimum acceleration factor
for speeds up to 0.07 u/ms, we decelerate, down to 30% of input
speed.
hence 1 = a * 0.07 + 0.3
0.3 = a * 0.00 + 0.3 => a := 10
deceleration function is thus:
y = 10x + 0.3
Note:
* 0.07u/ms as threshold is a result of trial-and-error and
has no other intrinsic meaning.
* 0.3 is chosen simply because it is above the Nyquist frequency
for subpixel motion within a pixel.
*/
if (v_us2ms(speed_in) < 0.07) {
factor = 10 * v_us2ms(speed_in) + 0.3;
/* up to the threshold, we keep factor 1, i.e. 1:1 movement */
} else if (speed_in < threshold) {
factor = 1;
} else {
/* Acceleration function above the threshold:
y = ax' + b
where T is threshold
x is speed_in
x' is speed
and
y(T) == 1
hence 1 = ax' + 1
=> x' := (x - T)
*/
factor = incline * v_us2ms(speed_in - threshold) + 1;
}
/* Cap at the maximum acceleration factor */
factor = min(max_accel, factor);
return factor;
}
double
touchpad_accel_profile_linear(struct motion_filter *filter,
void *data,
double speed_in, /* units/us */
uint64_t time)
{
double factor; /* unitless */
speed_in *= TP_MAGIC_SLOWDOWN;
factor = pointer_accel_profile_linear(filter, data, speed_in, time);
return factor * TP_MAGIC_SLOWDOWN;
}
double
touchpad_lenovo_x230_accel_profile(struct motion_filter *filter,
void *data,
double speed_in,
uint64_t time)
{
/* Those touchpads presents an actual lower resolution that what is
* advertised. We see some jumps from the cursor due to the big steps
* in X and Y when we are receiving data.
* Apply a factor to minimize those jumps at low speed, and try
* keeping the same feeling as regular touchpads at high speed.
* It still feels slower but it is usable at least */
double factor; /* unitless */
struct pointer_accelerator *accel_filter =
(struct pointer_accelerator *)filter;
double f1, f2; /* unitless */
const double max_accel = accel_filter->accel *
X230_TP_MAGIC_LOW_RES_FACTOR; /* unitless factor */
const double threshold = accel_filter->threshold /
X230_TP_MAGIC_LOW_RES_FACTOR; /* units/us */
const double incline = accel_filter->incline * X230_TP_MAGIC_LOW_RES_FACTOR;
/* Note: the magic values in this function are obtained by
* trial-and-error. No other meaning should be interpreted.
* The calculation is a compressed form of
* pointer_accel_profile_linear(), look at the git history of that
* function for an explanation of what the min/max/etc. does.
*/
speed_in *= X230_MAGIC_SLOWDOWN / X230_TP_MAGIC_LOW_RES_FACTOR;
f1 = min(1, v_us2ms(speed_in) * 5);
f2 = 1 + (v_us2ms(speed_in) - v_us2ms(threshold)) * incline;
factor = min(max_accel, f2 > 1 ? f2 : f1);
return factor * X230_MAGIC_SLOWDOWN / X230_TP_MAGIC_LOW_RES_FACTOR;
}
double
trackpoint_accel_profile(struct motion_filter *filter,
void *data,
double speed_in, /* 1000-dpi normalized */
uint64_t time)
{
struct pointer_accelerator *accel_filter =
(struct pointer_accelerator *)filter;
double max_accel = accel_filter->accel; /* unitless factor */
double threshold = accel_filter->threshold; /* units/ms */
const double incline = accel_filter->incline;
double factor;
double dpi_factor = accel_filter->dpi_factor;
/* dpi_factor is always < 1.0, increase max_accel, reduce
the threshold so it kicks in earlier */
max_accel /= dpi_factor;
threshold *= dpi_factor;
/* see pointer_accel_profile_linear for a long description */
if (v_us2ms(speed_in) < 0.07)
factor = 10 * v_us2ms(speed_in) + 0.3;
else if (speed_in < threshold)
factor = 1;
else
factor = incline * v_us2ms(speed_in - threshold) + 1;
factor = min(max_accel, factor);
return factor;
}
struct motion_filter_interface accelerator_interface = {
.type = LIBINPUT_CONFIG_ACCEL_PROFILE_ADAPTIVE,
.filter = accelerator_filter,
.filter_constant = accelerator_filter_noop,
.restart = accelerator_restart,
.destroy = accelerator_destroy,
.set_speed = accelerator_set_speed,
};
static struct pointer_accelerator *
create_default_filter(int dpi)
{
struct pointer_accelerator *filter;
filter = zalloc(sizeof *filter);
if (filter == NULL)
return NULL;
filter->last_velocity = 0.0;
filter->trackers =
calloc(NUM_POINTER_TRACKERS, sizeof *filter->trackers);
filter->cur_tracker = 0;
filter->threshold = DEFAULT_THRESHOLD;
filter->accel = DEFAULT_ACCELERATION;
filter->incline = DEFAULT_INCLINE;
filter->dpi_factor = dpi/(double)DEFAULT_MOUSE_DPI;
return filter;
}
struct motion_filter *
create_pointer_accelerator_filter_linear(int dpi)
{
struct pointer_accelerator *filter;
filter = create_default_filter(dpi);
if (!filter)
return NULL;
filter->base.interface = &accelerator_interface;
filter->profile = pointer_accel_profile_linear;
return &filter->base;
}
struct motion_filter_interface accelerator_interface_low_dpi = {
.type = LIBINPUT_CONFIG_ACCEL_PROFILE_ADAPTIVE,
.filter = accelerator_filter_low_dpi,
.filter_constant = accelerator_filter_noop,
.restart = accelerator_restart,
.destroy = accelerator_destroy,
.set_speed = accelerator_set_speed,
};
struct motion_filter *
create_pointer_accelerator_filter_linear_low_dpi(int dpi)
{
struct pointer_accelerator *filter;
filter = create_default_filter(dpi);
if (!filter)
return NULL;
filter->base.interface = &accelerator_interface_low_dpi;
filter->profile = pointer_accel_profile_linear_low_dpi;
return &filter->base;
}
struct motion_filter_interface accelerator_interface_touchpad = {
.type = LIBINPUT_CONFIG_ACCEL_PROFILE_ADAPTIVE,
.filter = accelerator_filter,
.filter_constant = touchpad_constant_filter,
.restart = accelerator_restart,
.destroy = accelerator_destroy,
.set_speed = accelerator_set_speed,
};
struct motion_filter *
create_pointer_accelerator_filter_touchpad(int dpi)
{
struct pointer_accelerator *filter;
filter = create_default_filter(dpi);
if (!filter)
return NULL;
filter->base.interface = &accelerator_interface_touchpad;
filter->profile = touchpad_accel_profile_linear;
return &filter->base;
}
struct motion_filter_interface accelerator_interface_x230 = {
.type = LIBINPUT_CONFIG_ACCEL_PROFILE_ADAPTIVE,
.filter = accelerator_filter_x230,
.filter_constant = accelerator_filter_constant_x230,
.restart = accelerator_restart,
.destroy = accelerator_destroy,
.set_speed = accelerator_set_speed,
};
/* The Lenovo x230 has a bad touchpad. This accel method has been
* trial-and-error'd, any changes to it will require re-testing everything.
* Don't touch this.
*/
struct motion_filter *
create_pointer_accelerator_filter_lenovo_x230(int dpi)
{
struct pointer_accelerator *filter;
filter = zalloc(sizeof *filter);
if (filter == NULL)
return NULL;
filter->base.interface = &accelerator_interface_x230;
filter->profile = touchpad_lenovo_x230_accel_profile;
filter->last_velocity = 0.0;
filter->trackers =
calloc(NUM_POINTER_TRACKERS, sizeof *filter->trackers);
filter->cur_tracker = 0;
filter->threshold = X230_THRESHOLD;
filter->accel = X230_ACCELERATION; /* unitless factor */
filter->incline = X230_INCLINE; /* incline of the acceleration function */
filter->dpi_factor = 1; /* unused for this accel method */
return &filter->base;
}
struct motion_filter_interface accelerator_interface_trackpoint = {
.type = LIBINPUT_CONFIG_ACCEL_PROFILE_ADAPTIVE,
.filter = accelerator_filter_trackpoint,
.filter_constant = accelerator_filter_noop,
.restart = accelerator_restart,
.destroy = accelerator_destroy,
.set_speed = accelerator_set_speed,
};
struct motion_filter *
create_pointer_accelerator_filter_trackpoint(int dpi)
{
struct pointer_accelerator *filter;
filter = create_default_filter(dpi);
if (!filter)
return NULL;
filter->base.interface = &accelerator_interface_trackpoint;
filter->profile = trackpoint_accel_profile;
filter->threshold = DEFAULT_THRESHOLD;
filter->accel = DEFAULT_ACCELERATION;
filter->incline = DEFAULT_INCLINE;
return &filter->base;
}
static struct normalized_coords
accelerator_filter_flat(struct motion_filter *filter,
const struct normalized_coords *unaccelerated,
void *data, uint64_t time)
{
struct pointer_accelerator_flat *accel_filter =
(struct pointer_accelerator_flat *)filter;
double factor; /* unitless factor */
struct normalized_coords accelerated;
struct normalized_coords unnormalized;
/* You want flat acceleration, you get flat acceleration for the
* device */
unnormalized.x = unaccelerated->x * accel_filter->dpi_factor;
unnormalized.y = unaccelerated->y * accel_filter->dpi_factor;
factor = accel_filter->factor;
accelerated.x = factor * unnormalized.x;
accelerated.y = factor * unnormalized.y;
return accelerated;
}
static bool
accelerator_set_speed_flat(struct motion_filter *filter,
double speed_adjustment)
{
struct pointer_accelerator_flat *accel_filter =
(struct pointer_accelerator_flat *)filter;
assert(speed_adjustment >= -1.0 && speed_adjustment <= 1.0);
/* Speed rage is 0-200% of the nominal speed, with 0 mapping to the
* nominal speed. Anything above 200 is pointless, we're already
* skipping over ever second pixel at 200% speed.
*/
accel_filter->factor = 1 + speed_adjustment;
filter->speed_adjustment = speed_adjustment;
return true;
}
static void
accelerator_destroy_flat(struct motion_filter *filter)
{
struct pointer_accelerator_flat *accel =
(struct pointer_accelerator_flat *) filter;
free(accel);
}
struct motion_filter_interface accelerator_interface_flat = {
.type = LIBINPUT_CONFIG_ACCEL_PROFILE_FLAT,
.filter = accelerator_filter_flat,
.filter_constant = accelerator_filter_noop,
.restart = NULL,
.destroy = accelerator_destroy_flat,
.set_speed = accelerator_set_speed_flat,
};
struct motion_filter *
create_pointer_accelerator_filter_flat(int dpi)
{
struct pointer_accelerator_flat *filter;
filter = zalloc(sizeof *filter);
if (filter == NULL)
return NULL;
filter->base.interface = &accelerator_interface_flat;
filter->dpi_factor = dpi/(double)DEFAULT_MOUSE_DPI;
return &filter->base;
}
static inline struct normalized_coords
tablet_accelerator_filter_flat_mouse(struct tablet_accelerator_flat *filter,
const struct normalized_coords *units)
{
struct normalized_coords accelerated;
/*
The input for and output of accel methods is usually a delta in
1000dpi equivalents. Tablets are high res (Intuos 4 is 5080 dpi)
and unmodified deltas are way too high. Slow it down to the
equivalent of a 1000dpi mouse. The ratio of that is:
ratio = 1000/(resolution_per_mm * 25.4)
i.e. on the Intuos4 it's a ratio of ~1/5.
*/
accelerated.x = units->x * filter->xres_scale;
accelerated.y = units->y * filter->yres_scale;
accelerated.x *= filter->factor;
accelerated.y *= filter->factor;
return accelerated;
}
static struct normalized_coords
tablet_accelerator_filter_flat_pen(struct tablet_accelerator_flat *filter,
const struct normalized_coords *units)
{
struct normalized_coords accelerated;
/* Tablet input is in device units, output is supposed to be in logical
* pixels roughly equivalent to a mouse/touchpad.
*
* This is a magical constant found by trial and error. On a 96dpi
* screen 0.4mm of movement correspond to 1px logical pixel which
* is almost identical to the tablet mapped to screen in absolute
* mode. Tested on a Intuos5, other tablets may vary.
*/
const double DPI_CONVERSION = 96.0/25.4 * 2.5; /* unitless factor */
struct normalized_coords mm;
mm.x = 1.0 * units->x/filter->xres;
mm.y = 1.0 * units->y/filter->yres;
accelerated.x = mm.x * filter->factor * DPI_CONVERSION;
accelerated.y = mm.y * filter->factor * DPI_CONVERSION;
return accelerated;
}
static struct normalized_coords
tablet_accelerator_filter_flat(struct motion_filter *filter,
const struct normalized_coords *units,
void *data, uint64_t time)
{
struct tablet_accelerator_flat *accel_filter =
(struct tablet_accelerator_flat *)filter;
struct libinput_tablet_tool *tool = (struct libinput_tablet_tool*)data;
enum libinput_tablet_tool_type type;
struct normalized_coords accel;
type = libinput_tablet_tool_get_type(tool);
switch (type) {
case LIBINPUT_TABLET_TOOL_TYPE_MOUSE:
case LIBINPUT_TABLET_TOOL_TYPE_LENS:
accel = tablet_accelerator_filter_flat_mouse(accel_filter,
units);
break;
default:
accel = tablet_accelerator_filter_flat_pen(accel_filter,
units);
break;
}
return accel;
}
static bool
tablet_accelerator_set_speed(struct motion_filter *filter,
double speed_adjustment)
{
struct tablet_accelerator_flat *accel_filter =
(struct tablet_accelerator_flat *)filter;
assert(speed_adjustment >= -1.0 && speed_adjustment <= 1.0);
accel_filter->factor = speed_adjustment + 1.0;
return true;
}
static void
tablet_accelerator_destroy(struct motion_filter *filter)
{
struct tablet_accelerator_flat *accel_filter =
(struct tablet_accelerator_flat *)filter;
free(accel_filter);
}
struct motion_filter_interface accelerator_interface_tablet = {
.type = LIBINPUT_CONFIG_ACCEL_PROFILE_FLAT,
.filter = tablet_accelerator_filter_flat,
.filter_constant = NULL,
.restart = NULL,
.destroy = tablet_accelerator_destroy,
.set_speed = tablet_accelerator_set_speed,
};
static struct tablet_accelerator_flat *
create_tablet_filter_flat(int xres, int yres)
{
struct tablet_accelerator_flat *filter;
filter = zalloc(sizeof *filter);
if (filter == NULL)
return NULL;
filter->factor = 1.0;
filter->xres = xres;
filter->yres = yres;
filter->xres_scale = DEFAULT_MOUSE_DPI/(25.4 * xres);
filter->yres_scale = DEFAULT_MOUSE_DPI/(25.4 * yres);
return filter;
}
struct motion_filter *
create_pointer_accelerator_filter_tablet(int xres, int yres)
{
struct tablet_accelerator_flat *filter;
filter = create_tablet_filter_flat(xres, yres);
if (!filter)
return NULL;
filter->base.interface = &accelerator_interface_tablet;
return &filter->base;
}