libinput/test/test-utils.c
Peter Hutterer cbbd5b15c6 test: split out the unit tests into a separate test suite
All the bits that test for utility functions to work correctly can be run
separately from the main test suite (which tests devices and libinput in
general). These bits here are the ones that test the code itself and aren't
reliant on anything else.

Signed-off-by: Peter Hutterer <peter.hutterer@who-t.net>
2019-03-14 11:28:05 +10:00

1083 lines
25 KiB
C

/*
* Copyright © 2014 Red Hat, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#include <config.h>
#include <check.h>
#include <libinput-util.h>
#include "libinput-util.h"
#define TEST_VERSIONSORT
#include "libinput-versionsort.h"
#include "check-double-macros.h"
START_TEST(bitfield_helpers)
{
/* This value has a bit set on all of the word boundaries we want to
* test: 0, 1, 7, 8, 31, 32, and 33
*/
unsigned char read_bitfield[] = { 0x83, 0x1, 0x0, 0x80, 0x3 };
unsigned char write_bitfield[ARRAY_LENGTH(read_bitfield)] = {0};
size_t i;
/* Now check that the bitfield we wrote to came out to be the same as
* the bitfield we were writing from */
for (i = 0; i < ARRAY_LENGTH(read_bitfield) * 8; i++) {
switch (i) {
case 0:
case 1:
case 7:
case 8:
case 31:
case 32:
case 33:
ck_assert(bit_is_set(read_bitfield, i));
set_bit(write_bitfield, i);
break;
default:
ck_assert(!bit_is_set(read_bitfield, i));
clear_bit(write_bitfield, i);
break;
}
}
ck_assert_int_eq(memcmp(read_bitfield,
write_bitfield,
sizeof(read_bitfield)),
0);
}
END_TEST
START_TEST(matrix_helpers)
{
struct matrix m1, m2, m3;
float f[6] = { 1, 2, 3, 4, 5, 6 };
int x, y;
int row, col;
matrix_init_identity(&m1);
for (row = 0; row < 3; row++) {
for (col = 0; col < 3; col++) {
ck_assert_int_eq(m1.val[row][col],
(row == col) ? 1 : 0);
}
}
ck_assert(matrix_is_identity(&m1));
matrix_from_farray6(&m2, f);
ck_assert_int_eq(m2.val[0][0], 1);
ck_assert_int_eq(m2.val[0][1], 2);
ck_assert_int_eq(m2.val[0][2], 3);
ck_assert_int_eq(m2.val[1][0], 4);
ck_assert_int_eq(m2.val[1][1], 5);
ck_assert_int_eq(m2.val[1][2], 6);
ck_assert_int_eq(m2.val[2][0], 0);
ck_assert_int_eq(m2.val[2][1], 0);
ck_assert_int_eq(m2.val[2][2], 1);
x = 100;
y = 5;
matrix_mult_vec(&m1, &x, &y);
ck_assert_int_eq(x, 100);
ck_assert_int_eq(y, 5);
matrix_mult(&m3, &m1, &m1);
ck_assert(matrix_is_identity(&m3));
matrix_init_scale(&m2, 2, 4);
ck_assert_int_eq(m2.val[0][0], 2);
ck_assert_int_eq(m2.val[0][1], 0);
ck_assert_int_eq(m2.val[0][2], 0);
ck_assert_int_eq(m2.val[1][0], 0);
ck_assert_int_eq(m2.val[1][1], 4);
ck_assert_int_eq(m2.val[1][2], 0);
ck_assert_int_eq(m2.val[2][0], 0);
ck_assert_int_eq(m2.val[2][1], 0);
ck_assert_int_eq(m2.val[2][2], 1);
matrix_mult_vec(&m2, &x, &y);
ck_assert_int_eq(x, 200);
ck_assert_int_eq(y, 20);
matrix_init_translate(&m2, 10, 100);
ck_assert_int_eq(m2.val[0][0], 1);
ck_assert_int_eq(m2.val[0][1], 0);
ck_assert_int_eq(m2.val[0][2], 10);
ck_assert_int_eq(m2.val[1][0], 0);
ck_assert_int_eq(m2.val[1][1], 1);
ck_assert_int_eq(m2.val[1][2], 100);
ck_assert_int_eq(m2.val[2][0], 0);
ck_assert_int_eq(m2.val[2][1], 0);
ck_assert_int_eq(m2.val[2][2], 1);
matrix_mult_vec(&m2, &x, &y);
ck_assert_int_eq(x, 210);
ck_assert_int_eq(y, 120);
matrix_to_farray6(&m2, f);
ck_assert_int_eq(f[0], 1);
ck_assert_int_eq(f[1], 0);
ck_assert_int_eq(f[2], 10);
ck_assert_int_eq(f[3], 0);
ck_assert_int_eq(f[4], 1);
ck_assert_int_eq(f[5], 100);
}
END_TEST
START_TEST(ratelimit_helpers)
{
struct ratelimit rl;
unsigned int i, j;
/* 10 attempts every 1000ms */
ratelimit_init(&rl, ms2us(1000), 10);
for (j = 0; j < 3; ++j) {
/* a burst of 9 attempts must succeed */
for (i = 0; i < 9; ++i) {
ck_assert_int_eq(ratelimit_test(&rl),
RATELIMIT_PASS);
}
/* the 10th attempt reaches the threshold */
ck_assert_int_eq(ratelimit_test(&rl), RATELIMIT_THRESHOLD);
/* ..then further attempts must fail.. */
ck_assert_int_eq(ratelimit_test(&rl), RATELIMIT_EXCEEDED);
/* ..regardless of how often we try. */
for (i = 0; i < 100; ++i) {
ck_assert_int_eq(ratelimit_test(&rl),
RATELIMIT_EXCEEDED);
}
/* ..even after waiting 20ms */
msleep(100);
for (i = 0; i < 100; ++i) {
ck_assert_int_eq(ratelimit_test(&rl),
RATELIMIT_EXCEEDED);
}
/* but after 1000ms the counter is reset */
msleep(950); /* +50ms to account for time drifts */
}
}
END_TEST
struct parser_test {
char *tag;
int expected_value;
};
START_TEST(dpi_parser)
{
struct parser_test tests[] = {
{ "450 *1800 3200", 1800 },
{ "*450 1800 3200", 450 },
{ "450 1800 *3200", 3200 },
{ "450 1800 3200", 3200 },
{ "450 1800 failboat", 0 },
{ "450 1800 *failboat", 0 },
{ "0 450 1800 *3200", 0 },
{ "450@37 1800@12 *3200@6", 3200 },
{ "450@125 1800@125 *3200@125 ", 3200 },
{ "450@125 *1800@125 3200@125", 1800 },
{ "*this @string fails", 0 },
{ "12@34 *45@", 0 },
{ "12@a *45@", 0 },
{ "12@a *45@25", 0 },
{ " * 12, 450, 800", 0 },
{ " *12, 450, 800", 12 },
{ "*12, *450, 800", 12 },
{ "*-23412, 450, 800", 0 },
{ "112@125, 450@125, 800@125, 900@-125", 0 },
{ "", 0 },
{ " ", 0 },
{ "* ", 0 },
{ NULL, 0 }
};
int i, dpi;
for (i = 0; tests[i].tag != NULL; i++) {
dpi = parse_mouse_dpi_property(tests[i].tag);
ck_assert_int_eq(dpi, tests[i].expected_value);
}
dpi = parse_mouse_dpi_property(NULL);
ck_assert_int_eq(dpi, 0);
}
END_TEST
START_TEST(wheel_click_parser)
{
struct parser_test tests[] = {
{ "1", 1 },
{ "10", 10 },
{ "-12", -12 },
{ "360", 360 },
{ "0", 0 },
{ "-0", 0 },
{ "a", 0 },
{ "10a", 0 },
{ "10-", 0 },
{ "sadfasfd", 0 },
{ "361", 0 },
{ NULL, 0 }
};
int i, angle;
for (i = 0; tests[i].tag != NULL; i++) {
angle = parse_mouse_wheel_click_angle_property(tests[i].tag);
ck_assert_int_eq(angle, tests[i].expected_value);
}
}
END_TEST
START_TEST(wheel_click_count_parser)
{
struct parser_test tests[] = {
{ "1", 1 },
{ "10", 10 },
{ "-12", -12 },
{ "360", 360 },
{ "0", 0 },
{ "-0", 0 },
{ "a", 0 },
{ "10a", 0 },
{ "10-", 0 },
{ "sadfasfd", 0 },
{ "361", 0 },
{ NULL, 0 }
};
int i, angle;
for (i = 0; tests[i].tag != NULL; i++) {
angle = parse_mouse_wheel_click_count_property(tests[i].tag);
ck_assert_int_eq(angle, tests[i].expected_value);
}
angle = parse_mouse_wheel_click_count_property(NULL);
ck_assert_int_eq(angle, 0);
}
END_TEST
START_TEST(dimension_prop_parser)
{
struct parser_test_dimension {
char *tag;
bool success;
int x, y;
} tests[] = {
{ "10x10", true, 10, 10 },
{ "1x20", true, 1, 20 },
{ "1x8000", true, 1, 8000 },
{ "238492x428210", true, 238492, 428210 },
{ "0x0", false, 0, 0 },
{ "-10x10", false, 0, 0 },
{ "-1", false, 0, 0 },
{ "1x-99", false, 0, 0 },
{ "0", false, 0, 0 },
{ "100", false, 0, 0 },
{ "", false, 0, 0 },
{ "abd", false, 0, 0 },
{ "xabd", false, 0, 0 },
{ "0xaf", false, 0, 0 },
{ "0x0x", false, 0, 0 },
{ "x10", false, 0, 0 },
{ NULL, false, 0, 0 }
};
int i;
size_t x, y;
bool success;
for (i = 0; tests[i].tag != NULL; i++) {
x = y = 0xad;
success = parse_dimension_property(tests[i].tag, &x, &y);
ck_assert(success == tests[i].success);
if (success) {
ck_assert_int_eq(x, tests[i].x);
ck_assert_int_eq(y, tests[i].y);
} else {
ck_assert_int_eq(x, 0xad);
ck_assert_int_eq(y, 0xad);
}
}
success = parse_dimension_property(NULL, &x, &y);
ck_assert(success == false);
}
END_TEST
START_TEST(reliability_prop_parser)
{
struct parser_test_reliability {
char *tag;
bool success;
enum switch_reliability reliability;
} tests[] = {
{ "reliable", true, RELIABILITY_RELIABLE },
{ "unreliable", false, 0 },
{ "", false, 0 },
{ "0", false, 0 },
{ "1", false, 0 },
{ NULL, false, 0, }
};
enum switch_reliability r;
bool success;
int i;
for (i = 0; tests[i].tag != NULL; i++) {
r = 0xaf;
success = parse_switch_reliability_property(tests[i].tag, &r);
ck_assert(success == tests[i].success);
if (success)
ck_assert_int_eq(r, tests[i].reliability);
else
ck_assert_int_eq(r, 0xaf);
}
success = parse_switch_reliability_property(NULL, &r);
ck_assert(success == true);
ck_assert_int_eq(r, RELIABILITY_UNKNOWN);
success = parse_switch_reliability_property("foo", NULL);
ck_assert(success == false);
}
END_TEST
START_TEST(calibration_prop_parser)
{
#define DEFAULT_VALUES { 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 }
const float untouched[6] = DEFAULT_VALUES;
struct parser_test_calibration {
char *prop;
bool success;
float values[6];
} tests[] = {
{ "", false, DEFAULT_VALUES },
{ "banana", false, DEFAULT_VALUES },
{ "1 2 3 a 5 6", false, DEFAULT_VALUES },
{ "2", false, DEFAULT_VALUES },
{ "2 3 4 5 6", false, DEFAULT_VALUES },
{ "1 2 3 4 5 6", true, DEFAULT_VALUES },
{ "6.00012 3.244 4.238 5.2421 6.0134 8.860", true,
{ 6.00012, 3.244, 4.238, 5.2421, 6.0134, 8.860 }},
{ "0xff 2 3 4 5 6", false, DEFAULT_VALUES },
{ NULL, false, DEFAULT_VALUES }
};
bool success;
float calibration[6];
int rc;
int i;
for (i = 0; tests[i].prop != NULL; i++) {
memcpy(calibration, untouched, sizeof(calibration));
success = parse_calibration_property(tests[i].prop,
calibration);
ck_assert_int_eq(success, tests[i].success);
if (success)
rc = memcmp(tests[i].values,
calibration,
sizeof(calibration));
else
rc = memcmp(untouched,
calibration,
sizeof(calibration));
ck_assert_int_eq(rc, 0);
}
memcpy(calibration, untouched, sizeof(calibration));
success = parse_calibration_property(NULL, calibration);
ck_assert(success == false);
rc = memcmp(untouched, calibration, sizeof(calibration));
ck_assert_int_eq(rc, 0);
}
END_TEST
START_TEST(range_prop_parser)
{
struct parser_test_range {
char *tag;
bool success;
int hi, lo;
} tests[] = {
{ "10:8", true, 10, 8 },
{ "100:-1", true, 100, -1 },
{ "-203813:-502023", true, -203813, -502023 },
{ "238492:28210", true, 238492, 28210 },
{ "none", true, 0, 0 },
{ "0:0", false, 0, 0 },
{ "", false, 0, 0 },
{ "abcd", false, 0, 0 },
{ "10:30:10", false, 0, 0 },
{ NULL, false, 0, 0 }
};
int i;
int hi, lo;
bool success;
for (i = 0; tests[i].tag != NULL; i++) {
hi = lo = 0xad;
success = parse_range_property(tests[i].tag, &hi, &lo);
ck_assert(success == tests[i].success);
if (success) {
ck_assert_int_eq(hi, tests[i].hi);
ck_assert_int_eq(lo, tests[i].lo);
} else {
ck_assert_int_eq(hi, 0xad);
ck_assert_int_eq(lo, 0xad);
}
}
success = parse_range_property(NULL, NULL, NULL);
ck_assert(success == false);
}
END_TEST
START_TEST(evcode_prop_parser)
{
struct parser_test_tuple {
const char *prop;
bool success;
size_t ntuples;
int tuples[20];
} tests[] = {
{ "EV_KEY", true, 1, {EV_KEY, 0xffff} },
{ "EV_ABS;", true, 1, {EV_ABS, 0xffff} },
{ "ABS_X;", true, 1, {EV_ABS, ABS_X} },
{ "SW_TABLET_MODE;", true, 1, {EV_SW, SW_TABLET_MODE} },
{ "EV_SW", true, 1, {EV_SW, 0xffff} },
{ "ABS_Y", true, 1, {EV_ABS, ABS_Y} },
{ "EV_ABS:0x00", true, 1, {EV_ABS, ABS_X} },
{ "EV_ABS:01", true, 1, {EV_ABS, ABS_Y} },
{ "ABS_TILT_X;ABS_TILT_Y;", true, 2,
{ EV_ABS, ABS_TILT_X,
EV_ABS, ABS_TILT_Y} },
{ "BTN_TOOL_DOUBLETAP;EV_KEY;KEY_A", true, 3,
{ EV_KEY, BTN_TOOL_DOUBLETAP,
EV_KEY, 0xffff,
EV_KEY, KEY_A } },
{ "REL_Y;ABS_Z;BTN_STYLUS", true, 3,
{ EV_REL, REL_Y,
EV_ABS, ABS_Z,
EV_KEY, BTN_STYLUS } },
{ "REL_Y;EV_KEY:0x123;BTN_STYLUS", true, 3,
{ EV_REL, REL_Y,
EV_KEY, 0x123,
EV_KEY, BTN_STYLUS } },
{ .prop = "", .success = false },
{ .prop = "EV_FOO", .success = false },
{ .prop = "EV_KEY;EV_FOO", .success = false },
{ .prop = "BTN_STYLUS;EV_FOO", .success = false },
{ .prop = "BTN_UNKNOWN", .success = false },
{ .prop = "BTN_UNKNOWN;EV_KEY", .success = false },
{ .prop = "PR_UNKNOWN", .success = false },
{ .prop = "BTN_STYLUS;PR_UNKNOWN;ABS_X", .success = false },
{ .prop = "EV_REL:0xffff", .success = false },
{ .prop = "EV_REL:0x123.", .success = false },
{ .prop = "EV_REL:ffff", .success = false },
{ .prop = "EV_REL:blah", .success = false },
{ .prop = "KEY_A:0x11", .success = false },
{ .prop = "EV_KEY:0x11 ", .success = false },
{ .prop = "EV_KEY:0x11not", .success = false },
{ .prop = "none", .success = false },
{ .prop = NULL },
};
struct parser_test_tuple *t;
for (int i = 0; tests[i].prop; i++) {
bool success;
size_t nevents = 32;
struct input_event events[nevents];
t = &tests[i];
success = parse_evcode_property(t->prop, events, &nevents);
ck_assert(success == t->success);
if (!success)
continue;
ck_assert_int_eq(nevents, t->ntuples);
for (size_t j = 0; j < nevents; j++) {
int type, code;
type = events[j].type;
code = events[j].code;
ck_assert_int_eq(t->tuples[j * 2], type);
ck_assert_int_eq(t->tuples[j * 2 + 1], code);
}
}
}
END_TEST
START_TEST(time_conversion)
{
ck_assert_int_eq(us(10), 10);
ck_assert_int_eq(ns2us(10000), 10);
ck_assert_int_eq(ms2us(10), 10000);
ck_assert_int_eq(s2us(1), 1000000);
ck_assert_int_eq(us2ms(10000), 10);
}
END_TEST
struct atoi_test {
char *str;
bool success;
int val;
};
START_TEST(safe_atoi_test)
{
struct atoi_test tests[] = {
{ "10", true, 10 },
{ "20", true, 20 },
{ "-1", true, -1 },
{ "2147483647", true, 2147483647 },
{ "-2147483648", true, -2147483648 },
{ "4294967295", false, 0 },
{ "0x0", false, 0 },
{ "-10x10", false, 0 },
{ "1x-99", false, 0 },
{ "", false, 0 },
{ "abd", false, 0 },
{ "xabd", false, 0 },
{ "0xaf", false, 0 },
{ "0x0x", false, 0 },
{ "x10", false, 0 },
{ NULL, false, 0 }
};
int v;
bool success;
for (int i = 0; tests[i].str != NULL; i++) {
v = 0xad;
success = safe_atoi(tests[i].str, &v);
ck_assert(success == tests[i].success);
if (success)
ck_assert_int_eq(v, tests[i].val);
else
ck_assert_int_eq(v, 0xad);
}
}
END_TEST
START_TEST(safe_atoi_base_16_test)
{
struct atoi_test tests[] = {
{ "10", true, 0x10 },
{ "20", true, 0x20 },
{ "-1", true, -1 },
{ "0x10", true, 0x10 },
{ "0xff", true, 0xff },
{ "abc", true, 0xabc },
{ "-10", true, -0x10 },
{ "0x0", true, 0 },
{ "0", true, 0 },
{ "0x-99", false, 0 },
{ "0xak", false, 0 },
{ "0x", false, 0 },
{ "x10", false, 0 },
{ NULL, false, 0 }
};
int v;
bool success;
for (int i = 0; tests[i].str != NULL; i++) {
v = 0xad;
success = safe_atoi_base(tests[i].str, &v, 16);
ck_assert(success == tests[i].success);
if (success)
ck_assert_int_eq(v, tests[i].val);
else
ck_assert_int_eq(v, 0xad);
}
}
END_TEST
START_TEST(safe_atoi_base_8_test)
{
struct atoi_test tests[] = {
{ "7", true, 07 },
{ "10", true, 010 },
{ "20", true, 020 },
{ "-1", true, -1 },
{ "010", true, 010 },
{ "0ff", false, 0 },
{ "abc", false, 0},
{ "0xabc", false, 0},
{ "-10", true, -010 },
{ "0", true, 0 },
{ "00", true, 0 },
{ "0x0", false, 0 },
{ "0x-99", false, 0 },
{ "0xak", false, 0 },
{ "0x", false, 0 },
{ "x10", false, 0 },
{ NULL, false, 0 }
};
int v;
bool success;
for (int i = 0; tests[i].str != NULL; i++) {
v = 0xad;
success = safe_atoi_base(tests[i].str, &v, 8);
ck_assert(success == tests[i].success);
if (success)
ck_assert_int_eq(v, tests[i].val);
else
ck_assert_int_eq(v, 0xad);
}
}
END_TEST
struct atou_test {
char *str;
bool success;
unsigned int val;
};
START_TEST(safe_atou_test)
{
struct atou_test tests[] = {
{ "10", true, 10 },
{ "20", true, 20 },
{ "-1", false, 0 },
{ "2147483647", true, 2147483647 },
{ "-2147483648", false, 0},
{ "0x0", false, 0 },
{ "-10x10", false, 0 },
{ "1x-99", false, 0 },
{ "", false, 0 },
{ "abd", false, 0 },
{ "xabd", false, 0 },
{ "0xaf", false, 0 },
{ "0x0x", false, 0 },
{ "x10", false, 0 },
{ NULL, false, 0 }
};
unsigned int v;
bool success;
for (int i = 0; tests[i].str != NULL; i++) {
v = 0xad;
success = safe_atou(tests[i].str, &v);
ck_assert(success == tests[i].success);
if (success)
ck_assert_int_eq(v, tests[i].val);
else
ck_assert_int_eq(v, 0xad);
}
}
END_TEST
START_TEST(safe_atou_base_16_test)
{
struct atou_test tests[] = {
{ "10", true, 0x10 },
{ "20", true, 0x20 },
{ "-1", false, 0 },
{ "0x10", true, 0x10 },
{ "0xff", true, 0xff },
{ "abc", true, 0xabc },
{ "-10", false, 0 },
{ "0x0", true, 0 },
{ "0", true, 0 },
{ "0x-99", false, 0 },
{ "0xak", false, 0 },
{ "0x", false, 0 },
{ "x10", false, 0 },
{ NULL, false, 0 }
};
unsigned int v;
bool success;
for (int i = 0; tests[i].str != NULL; i++) {
v = 0xad;
success = safe_atou_base(tests[i].str, &v, 16);
ck_assert(success == tests[i].success);
if (success)
ck_assert_int_eq(v, tests[i].val);
else
ck_assert_int_eq(v, 0xad);
}
}
END_TEST
START_TEST(safe_atou_base_8_test)
{
struct atou_test tests[] = {
{ "7", true, 07 },
{ "10", true, 010 },
{ "20", true, 020 },
{ "-1", false, 0 },
{ "010", true, 010 },
{ "0ff", false, 0 },
{ "abc", false, 0},
{ "0xabc", false, 0},
{ "-10", false, 0 },
{ "0", true, 0 },
{ "00", true, 0 },
{ "0x0", false, 0 },
{ "0x-99", false, 0 },
{ "0xak", false, 0 },
{ "0x", false, 0 },
{ "x10", false, 0 },
{ NULL, false, 0 }
};
unsigned int v;
bool success;
for (int i = 0; tests[i].str != NULL; i++) {
v = 0xad;
success = safe_atou_base(tests[i].str, &v, 8);
ck_assert(success == tests[i].success);
if (success)
ck_assert_int_eq(v, tests[i].val);
else
ck_assert_int_eq(v, 0xad);
}
}
END_TEST
START_TEST(safe_atod_test)
{
struct atod_test {
char *str;
bool success;
double val;
} tests[] = {
{ "10", true, 10 },
{ "20", true, 20 },
{ "-1", true, -1 },
{ "2147483647", true, 2147483647 },
{ "-2147483648", true, -2147483648 },
{ "4294967295", true, 4294967295 },
{ "0x0", false, 0 },
{ "0x10", false, 0 },
{ "0xaf", false, 0 },
{ "x80", false, 0 },
{ "0.0", true, 0.0 },
{ "0.1", true, 0.1 },
{ "1.2", true, 1.2 },
{ "-324.9", true, -324.9 },
{ "9324.9", true, 9324.9 },
{ "NAN", false, 0 },
{ "INFINITY", false, 0 },
{ "-10x10", false, 0 },
{ "1x-99", false, 0 },
{ "", false, 0 },
{ "abd", false, 0 },
{ "xabd", false, 0 },
{ "0x0x", false, 0 },
{ NULL, false, 0 }
};
double v;
bool success;
for (int i = 0; tests[i].str != NULL; i++) {
v = 0xad;
success = safe_atod(tests[i].str, &v);
ck_assert(success == tests[i].success);
if (success)
ck_assert_int_eq(v, tests[i].val);
else
ck_assert_int_eq(v, 0xad);
}
}
END_TEST
START_TEST(strsplit_test)
{
struct strsplit_test {
const char *string;
const char *delim;
const char *results[10];
} tests[] = {
{ "one two three", " ", { "one", "two", "three", NULL } },
{ "one", " ", { "one", NULL } },
{ "one two ", " ", { "one", "two", NULL } },
{ "one two", " ", { "one", "two", NULL } },
{ " one two", " ", { "one", "two", NULL } },
{ "one", "\t \r", { "one", NULL } },
{ "one two three", " t", { "one", "wo", "hree", NULL } },
{ " one two three", "te", { " on", " ", "wo ", "hr", NULL } },
{ "one", "ne", { "o", NULL } },
{ "onene", "ne", { "o", NULL } },
{ NULL, NULL, { NULL }}
};
struct strsplit_test *t = tests;
while (t->string) {
char **strv;
int idx = 0;
strv = strv_from_string(t->string, t->delim);
while (t->results[idx]) {
ck_assert_str_eq(t->results[idx], strv[idx]);
idx++;
}
ck_assert_ptr_eq(strv[idx], NULL);
strv_free(strv);
t++;
}
/* Special cases */
ck_assert_ptr_eq(strv_from_string("", " "), NULL);
ck_assert_ptr_eq(strv_from_string(" ", " "), NULL);
ck_assert_ptr_eq(strv_from_string(" ", " "), NULL);
ck_assert_ptr_eq(strv_from_string("oneoneone", "one"), NULL);
}
END_TEST
START_TEST(kvsplit_double_test)
{
struct kvsplit_dbl_test {
const char *string;
const char *psep;
const char *kvsep;
ssize_t nresults;
struct {
double a;
double b;
} results[32];
} tests[] = {
{ "1:2;3:4;5:6", ";", ":", 3, { {1, 2}, {3, 4}, {5, 6}}},
{ "1.0x2.3 -3.2x4.5 8.090909x-6.00", " ", "x", 3, { {1.0, 2.3}, {-3.2, 4.5}, {8.090909, -6}}},
{ "1:2", "x", ":", 1, {{1, 2}}},
{ "1:2", ":", "x", -1, {}},
{ "1:2", NULL, "x", -1, {}},
{ "1:2", "", "x", -1, {}},
{ "1:2", "x", NULL, -1, {}},
{ "1:2", "x", "", -1, {}},
{ "a:b", "x", ":", -1, {}},
{ "", " ", "x", -1, {}},
{ "1.2.3.4.5", ".", "", -1, {}},
{ NULL }
};
struct kvsplit_dbl_test *t = tests;
while (t->string) {
struct key_value_double *result = NULL;
ssize_t npairs;
npairs = kv_double_from_string(t->string,
t->psep,
t->kvsep,
&result);
ck_assert_int_eq(npairs, t->nresults);
for (ssize_t i = 0; i < npairs; i++) {
ck_assert_double_eq(t->results[i].a, result[i].key);
ck_assert_double_eq(t->results[i].b, result[i].value);
}
free(result);
t++;
}
}
END_TEST
START_TEST(strjoin_test)
{
struct strjoin_test {
char *strv[10];
const char *joiner;
const char *result;
} tests[] = {
{ { "one", "two", "three", NULL }, " ", "one two three" },
{ { "one", NULL }, "x", "one" },
{ { "one", "two", NULL }, "x", "onextwo" },
{ { "one", "two", NULL }, ",", "one,two" },
{ { "one", "two", NULL }, ", ", "one, two" },
{ { "one", "two", NULL }, "one", "oneonetwo" },
{ { "one", "two", NULL }, NULL, NULL },
{ { "", "", "", NULL }, " ", " " },
{ { "a", "b", "c", NULL }, "", "abc" },
{ { "", "b", "c", NULL }, "x", "xbxc" },
{ { "", "", "", NULL }, "", "" },
{ { NULL }, NULL, NULL }
};
struct strjoin_test *t = tests;
struct strjoin_test nulltest = { {NULL}, "x", NULL };
while (t->strv[0]) {
char *str;
str = strv_join(t->strv, t->joiner);
if (t->result == NULL)
ck_assert(str == NULL);
else
ck_assert_str_eq(str, t->result);
free(str);
t++;
}
ck_assert(strv_join(nulltest.strv, "x") == NULL);
}
END_TEST
START_TEST(list_test_insert)
{
struct list_test {
int val;
struct list node;
} tests[] = {
{ .val = 1 },
{ .val = 2 },
{ .val = 3 },
{ .val = 4 },
};
struct list_test *t;
struct list head;
int val;
list_init(&head);
ARRAY_FOR_EACH(tests, t) {
list_insert(&head, &t->node);
}
val = 4;
list_for_each(t, &head, node) {
ck_assert_int_eq(t->val, val);
val--;
}
ck_assert_int_eq(val, 0);
}
END_TEST
START_TEST(list_test_append)
{
struct list_test {
int val;
struct list node;
} tests[] = {
{ .val = 1 },
{ .val = 2 },
{ .val = 3 },
{ .val = 4 },
};
struct list_test *t;
struct list head;
int val;
list_init(&head);
ARRAY_FOR_EACH(tests, t) {
list_append(&head, &t->node);
}
val = 1;
list_for_each(t, &head, node) {
ck_assert_int_eq(t->val, val);
val++;
}
ck_assert_int_eq(val, 5);
}
END_TEST
START_TEST(strverscmp_test)
{
ck_assert_int_eq(libinput_strverscmp("", ""), 0);
ck_assert_int_gt(libinput_strverscmp("0.0.1", ""), 0);
ck_assert_int_lt(libinput_strverscmp("", "0.0.1"), 0);
ck_assert_int_eq(libinput_strverscmp("0.0.1", "0.0.1"), 0);
ck_assert_int_eq(libinput_strverscmp("0.0.1", "0.0.2"), -1);
ck_assert_int_eq(libinput_strverscmp("0.0.2", "0.0.1"), 1);
ck_assert_int_eq(libinput_strverscmp("0.0.1", "0.1.0"), -1);
ck_assert_int_eq(libinput_strverscmp("0.1.0", "0.0.1"), 1);
}
END_TEST
static Suite *
litest_utils_suite(void)
{
TCase *tc;
Suite *s;
s = suite_create("litest:utils");
tc = tcase_create("utils");
tcase_add_test(tc, bitfield_helpers);
tcase_add_test(tc, matrix_helpers);
tcase_add_test(tc, ratelimit_helpers);
tcase_add_test(tc, dpi_parser);
tcase_add_test(tc, wheel_click_parser);
tcase_add_test(tc, wheel_click_count_parser);
tcase_add_test(tc, dimension_prop_parser);
tcase_add_test(tc, reliability_prop_parser);
tcase_add_test(tc, calibration_prop_parser);
tcase_add_test(tc, range_prop_parser);
tcase_add_test(tc, evcode_prop_parser);
tcase_add_test(tc, safe_atoi_test);
tcase_add_test(tc, safe_atoi_base_16_test);
tcase_add_test(tc, safe_atoi_base_8_test);
tcase_add_test(tc, safe_atou_test);
tcase_add_test(tc, safe_atou_base_16_test);
tcase_add_test(tc, safe_atou_base_8_test);
tcase_add_test(tc, safe_atod_test);
tcase_add_test(tc, strsplit_test);
tcase_add_test(tc, kvsplit_double_test);
tcase_add_test(tc, strjoin_test);
tcase_add_test(tc, time_conversion);
tcase_add_test(tc, list_test_insert);
tcase_add_test(tc, list_test_append);
tcase_add_test(tc, strverscmp_test);
return s;
}
int main(int argc, char **argv)
{
int nfailed;
Suite *s;
SRunner *sr;
/* when running under valgrind we're using nofork mode, so a signal
* raised by a test will fail in valgrind. There's nothing to
* memcheck here anyway, so just skip the valgrind test */
if (getenv("USING_VALGRIND"))
return EXIT_SUCCESS;
s = litest_utils_suite();
sr = srunner_create(s);
srunner_run_all(sr, CK_ENV);
nfailed = srunner_ntests_failed(sr);
srunner_free(sr);
return (nfailed == 0) ? EXIT_SUCCESS : EXIT_FAILURE;
}