/* * Copyright © 2012 Jonas Ådahl * * Permission to use, copy, modify, distribute, and sell this software and * its documentation for any purpose is hereby granted without fee, provided * that the above copyright notice appear in all copies and that both that * copyright notice and this permission notice appear in supporting * documentation, and that the name of the copyright holders not be used in * advertising or publicity pertaining to distribution of the software * without specific, written prior permission. The copyright holders make * no representations about the suitability of this software for any * purpose. It is provided "as is" without express or implied warranty. * * THE COPYRIGHT HOLDERS DISCLAIM ALL WARRANTIES WITH REGARD TO THIS * SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND * FITNESS, IN NO EVENT SHALL THE COPYRIGHT HOLDERS BE LIABLE FOR ANY * SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER * RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF * CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include "config.h" #include #include #include #include #include #include #include "filter.h" #include "libinput-util.h" #include "filter-private.h" void filter_dispatch(struct motion_filter *filter, struct motion_params *motion, void *data, uint64_t time) { filter->interface->filter(filter, motion, data, time); } void filter_destroy(struct motion_filter *filter) { if (!filter) return; filter->interface->destroy(filter); } bool filter_set_speed(struct motion_filter *filter, double speed) { return filter->interface->set_speed(filter, speed); } double filter_get_speed(struct motion_filter *filter) { return filter->speed; } /* * Default parameters for pointer acceleration profiles. */ #define DEFAULT_THRESHOLD 0.4 /* in units/ms */ #define DEFAULT_ACCELERATION 2.0 /* unitless factor */ #define DEFAULT_INCLINE 1.1 /* unitless factor */ /* * Pointer acceleration filter constants */ #define MAX_VELOCITY_DIFF 1.0 /* units/ms */ #define MOTION_TIMEOUT 300 /* (ms) */ #define NUM_POINTER_TRACKERS 16 struct pointer_tracker { double dx; /* delta to most recent event, in device units */ double dy; /* delta to most recent event, in device units */ uint64_t time; /* ms */ int dir; }; struct pointer_accelerator; struct pointer_accelerator { struct motion_filter base; accel_profile_func_t profile; double velocity; /* units/ms */ double last_velocity; /* units/ms */ int last_dx; /* device units */ int last_dy; /* device units */ struct pointer_tracker *trackers; int cur_tracker; double threshold; /* units/ms */ double accel; /* unitless factor */ double incline; /* incline of the function */ }; static void feed_trackers(struct pointer_accelerator *accel, double dx, double dy, uint64_t time) { int i, current; struct pointer_tracker *trackers = accel->trackers; for (i = 0; i < NUM_POINTER_TRACKERS; i++) { trackers[i].dx += dx; trackers[i].dy += dy; } current = (accel->cur_tracker + 1) % NUM_POINTER_TRACKERS; accel->cur_tracker = current; trackers[current].dx = 0.0; trackers[current].dy = 0.0; trackers[current].time = time; trackers[current].dir = vector_get_direction(dx, dy); } static struct pointer_tracker * tracker_by_offset(struct pointer_accelerator *accel, unsigned int offset) { unsigned int index = (accel->cur_tracker + NUM_POINTER_TRACKERS - offset) % NUM_POINTER_TRACKERS; return &accel->trackers[index]; } static double calculate_tracker_velocity(struct pointer_tracker *tracker, uint64_t time) { int dx; int dy; double distance; dx = tracker->dx; dy = tracker->dy; distance = sqrt(dx*dx + dy*dy); return distance / (double)(time - tracker->time); /* units/ms */ } static double calculate_velocity(struct pointer_accelerator *accel, uint64_t time) { struct pointer_tracker *tracker; double velocity; double result = 0.0; double initial_velocity = 0.0; double velocity_diff; unsigned int offset; unsigned int dir = tracker_by_offset(accel, 0)->dir; /* Find least recent vector within a timelimit, maximum velocity diff * and direction threshold. */ for (offset = 1; offset < NUM_POINTER_TRACKERS; offset++) { tracker = tracker_by_offset(accel, offset); /* Stop if too far away in time */ if (time - tracker->time > MOTION_TIMEOUT || tracker->time > time) break; /* Stop if direction changed */ dir &= tracker->dir; if (dir == 0) break; velocity = calculate_tracker_velocity(tracker, time); if (initial_velocity == 0.0) { result = initial_velocity = velocity; } else { /* Stop if velocity differs too much from initial */ velocity_diff = fabs(initial_velocity - velocity); if (velocity_diff > MAX_VELOCITY_DIFF) break; result = velocity; } } return result; /* units/ms */ } static double acceleration_profile(struct pointer_accelerator *accel, void *data, double velocity, uint64_t time) { return accel->profile(&accel->base, data, velocity, time); } static double calculate_acceleration(struct pointer_accelerator *accel, void *data, double velocity, uint64_t time) { double factor; /* Use Simpson's rule to calculate the avarage acceleration between * the previous motion and the most recent. */ factor = acceleration_profile(accel, data, velocity, time); factor += acceleration_profile(accel, data, accel->last_velocity, time); factor += 4.0 * acceleration_profile(accel, data, (accel->last_velocity + velocity) / 2, time); factor = factor / 6.0; return factor; /* unitless factor */ } static void accelerator_filter(struct motion_filter *filter, struct motion_params *motion, void *data, uint64_t time) { struct pointer_accelerator *accel = (struct pointer_accelerator *) filter; double velocity; /* units/ms */ double accel_value; /* unitless factor */ feed_trackers(accel, motion->dx, motion->dy, time); velocity = calculate_velocity(accel, time); accel_value = calculate_acceleration(accel, data, velocity, time); motion->dx = accel_value * motion->dx; motion->dy = accel_value * motion->dy; accel->last_dx = motion->dx; accel->last_dy = motion->dy; accel->last_velocity = velocity; } static void accelerator_destroy(struct motion_filter *filter) { struct pointer_accelerator *accel = (struct pointer_accelerator *) filter; free(accel->trackers); free(accel); } static bool accelerator_set_speed(struct motion_filter *filter, double speed) { struct pointer_accelerator *accel_filter = (struct pointer_accelerator *)filter; assert(speed >= -1.0 && speed <= 1.0); /* delay when accel kicks in */ accel_filter->threshold = DEFAULT_THRESHOLD - speed/6.0; /* adjust max accel factor */ accel_filter->accel = DEFAULT_ACCELERATION + speed; /* higher speed -> faster to reach max */ accel_filter->incline = DEFAULT_INCLINE + speed/2.0; filter->speed = speed; return true; } struct motion_filter_interface accelerator_interface = { accelerator_filter, accelerator_destroy, accelerator_set_speed, }; struct motion_filter * create_pointer_accelerator_filter(accel_profile_func_t profile) { struct pointer_accelerator *filter; filter = malloc(sizeof *filter); if (filter == NULL) return NULL; filter->base.interface = &accelerator_interface; filter->profile = profile; filter->last_velocity = 0.0; filter->last_dx = 0; filter->last_dy = 0; filter->trackers = calloc(NUM_POINTER_TRACKERS, sizeof *filter->trackers); filter->cur_tracker = 0; filter->threshold = DEFAULT_THRESHOLD; filter->accel = DEFAULT_ACCELERATION; filter->incline = DEFAULT_INCLINE; return &filter->base; } static inline double calc_penumbral_gradient(double x) { x *= 2.0; x -= 1.0; return 0.5 + (x * sqrt(1.0 - x * x) + asin(x)) / M_PI; } double pointer_accel_profile_linear(struct motion_filter *filter, void *data, double speed_in, uint64_t time) { struct pointer_accelerator *accel_filter = (struct pointer_accelerator *)filter; double s1, s2; const double max_accel = accel_filter->accel; /* unitless factor */ const double threshold = accel_filter->threshold; /* units/ms */ const double incline = accel_filter->incline; s1 = min(1, speed_in * 5); s2 = 1 + (speed_in - threshold) * incline; return min(max_accel, s2 > 1 ? s2 : s1); }