/* * Copyright © 2014 Red Hat, Inc. * * Permission to use, copy, modify, distribute, and sell this software and * its documentation for any purpose is hereby granted without fee, provided * that the above copyright notice appear in all copies and that both that * copyright notice and this permission notice appear in supporting * documentation, and that the name of the copyright holders not be used in * advertising or publicity pertaining to distribution of the software * without specific, written prior permission. The copyright holders make * no representations about the suitability of this software for any * purpose. It is provided "as is" without express or implied warranty. * * THE COPYRIGHT HOLDERS DISCLAIM ALL WARRANTIES WITH REGARD TO THIS * SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND * FITNESS, IN NO EVENT SHALL THE COPYRIGHT HOLDERS BE LIABLE FOR ANY * SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER * RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF * CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include "config.h" #include #include #include #include "evdev-mt-touchpad.h" #define DEFAULT_CONSTANT_ACCEL_NUMERATOR 50 #define DEFAULT_MIN_ACCEL_FACTOR 0.16 #define DEFAULT_MAX_ACCEL_FACTOR 1.0 #define DEFAULT_HYSTERESIS_MARGIN_DENOMINATOR 700.0 static inline int tp_hysteresis(int in, int center, int margin) { int diff = in - center; if (abs(diff) <= margin) return center; if (diff > margin) return center + diff - margin; else if (diff < -margin) return center + diff + margin; return center + diff; } static double tp_accel_profile(struct motion_filter *filter, void *data, double velocity, uint32_t time) { struct tp_dispatch *tp = (struct tp_dispatch *) data; double accel_factor; accel_factor = velocity * tp->accel.constant_factor; if (accel_factor > tp->accel.max_factor) accel_factor = tp->accel.max_factor; else if (accel_factor < tp->accel.min_factor) accel_factor = tp->accel.min_factor; return accel_factor; } static inline struct tp_motion * tp_motion_history_offset(struct tp_touch *t, int offset) { int offset_index = (t->history.index - offset + TOUCHPAD_HISTORY_LENGTH) % TOUCHPAD_HISTORY_LENGTH; return &t->history.samples[offset_index]; } static void tp_filter_motion(struct tp_dispatch *tp, double *dx, double *dy, uint32_t time) { struct motion_params motion; motion.dx = *dx; motion.dy = *dy; filter_dispatch(tp->filter, &motion, tp, time); *dx = motion.dx; *dy = motion.dy; } static inline void tp_motion_history_push(struct tp_touch *t) { int motion_index = (t->history.index + 1) % TOUCHPAD_HISTORY_LENGTH; if (t->history.count < TOUCHPAD_HISTORY_LENGTH) t->history.count++; t->history.samples[motion_index].x = t->x; t->history.samples[motion_index].y = t->y; t->history.index = motion_index; } static inline void tp_motion_hysteresis(struct tp_dispatch *tp, struct tp_touch *t) { int x = t->x, y = t->y; if (t->history.count == 0) { t->hysteresis.center_x = t->x; t->hysteresis.center_y = t->y; } else { x = tp_hysteresis(x, t->hysteresis.center_x, tp->hysteresis.margin_x); y = tp_hysteresis(y, t->hysteresis.center_y, tp->hysteresis.margin_y); t->hysteresis.center_x = x; t->hysteresis.center_y = y; t->x = x; t->y = y; } } static inline void tp_motion_history_reset(struct tp_touch *t) { t->history.count = 0; } static inline struct tp_touch * tp_current_touch(struct tp_dispatch *tp) { return &tp->touches[min(tp->slot, tp->ntouches)]; } static inline void tp_begin_touch(struct tp_dispatch *tp, struct tp_touch *t) { if (t->state != TOUCH_UPDATE) { tp_motion_history_reset(t); t->dirty = true; t->state = TOUCH_BEGIN; tp->nfingers_down++; assert(tp->nfingers_down >= 1); tp->queued |= TOUCHPAD_EVENT_MOTION; } } static inline void tp_end_touch(struct tp_dispatch *tp, struct tp_touch *t) { if (t->state == TOUCH_NONE) return; t->dirty = true; t->state = TOUCH_END; assert(tp->nfingers_down >= 1); tp->nfingers_down--; tp->queued |= TOUCHPAD_EVENT_MOTION; } static double tp_estimate_delta(int x0, int x1, int x2, int x3) { return (x0 + x1 - x2 - x3) / 4; } void tp_get_delta(struct tp_touch *t, double *dx, double *dy) { if (t->history.count < 4) { *dx = 0; *dy = 0; return; } *dx = tp_estimate_delta(tp_motion_history_offset(t, 0)->x, tp_motion_history_offset(t, 1)->x, tp_motion_history_offset(t, 2)->x, tp_motion_history_offset(t, 3)->x); *dy = tp_estimate_delta(tp_motion_history_offset(t, 0)->y, tp_motion_history_offset(t, 1)->y, tp_motion_history_offset(t, 2)->y, tp_motion_history_offset(t, 3)->y); } static void tp_process_absolute(struct tp_dispatch *tp, const struct input_event *e, uint32_t time) { struct tp_touch *t = tp_current_touch(tp); switch(e->code) { case ABS_MT_POSITION_X: t->x = e->value; t->millis = time; t->dirty = true; tp->queued |= TOUCHPAD_EVENT_MOTION; break; case ABS_MT_POSITION_Y: t->y = e->value; t->millis = time; t->dirty = true; tp->queued |= TOUCHPAD_EVENT_MOTION; break; case ABS_MT_SLOT: tp->slot = e->value; break; case ABS_MT_TRACKING_ID: t->millis = time; if (e->value != -1) tp_begin_touch(tp, t); else tp_end_touch(tp, t); } } static void tp_process_key(struct tp_dispatch *tp, const struct input_event *e, uint32_t time) { uint32_t mask; switch (e->code) { case BTN_LEFT: case BTN_MIDDLE: case BTN_RIGHT: mask = 1 << (e->code - BTN_LEFT); if (e->value) { tp->buttons.state |= mask; tp->queued |= TOUCHPAD_EVENT_BUTTON_PRESS; } else { tp->buttons.state &= ~mask; tp->queued |= TOUCHPAD_EVENT_BUTTON_RELEASE; } break; } } static void tp_process_state(struct tp_dispatch *tp, uint32_t time) { struct tp_touch *t; tp_for_each_touch(tp, t) { if (!t->dirty) continue; tp_motion_hysteresis(tp, t); tp_motion_history_push(t); } } static void tp_post_process_state(struct tp_dispatch *tp, uint32_t time) { struct tp_touch *t; tp_for_each_touch(tp, t) { if (!t->dirty) continue; if (t->state == TOUCH_END) t->state = TOUCH_NONE; else if (t->state == TOUCH_BEGIN) t->state = TOUCH_UPDATE; t->dirty = false; } tp->buttons.old_state = tp->buttons.state; tp->queued = TOUCHPAD_EVENT_NONE; } static void tp_post_twofinger_scroll(struct tp_dispatch *tp, uint32_t time) { struct tp_touch *t; int nchanged = 0; double dx = 0, dy =0; double tmpx, tmpy; tp_for_each_touch(tp, t) { if (t->dirty) { nchanged++; tp_get_delta(t, &tmpx, &tmpy); dx += tmpx; dy += tmpy; } } if (nchanged == 0) return; dx /= nchanged; dy /= nchanged; tp_filter_motion(tp, &dx, &dy, time); if (dx != 0.0) pointer_notify_axis(&tp->device->base, time, LIBINPUT_POINTER_AXIS_HORIZONTAL_SCROLL, li_fixed_from_double(dx)); if (dy != 0.0) pointer_notify_axis(&tp->device->base, time, LIBINPUT_POINTER_AXIS_VERTICAL_SCROLL, li_fixed_from_double(dy)); } static void tp_post_button_events(struct tp_dispatch *tp, uint32_t time) { uint32_t current, old, button; if ((tp->queued & (TOUCHPAD_EVENT_BUTTON_PRESS|TOUCHPAD_EVENT_BUTTON_RELEASE)) == 0) return; current = tp->buttons.state; old = tp->buttons.old_state; button = BTN_LEFT; while (current || old) { enum libinput_pointer_button_state state; if ((current & 0x1) ^ (old & 0x1)) { if (!!(current & 0x1)) state = LIBINPUT_POINTER_BUTTON_STATE_PRESSED; else state = LIBINPUT_POINTER_BUTTON_STATE_RELEASED; pointer_notify_button(&tp->device->base, time, button, state); } button++; current >>= 1; old >>= 1; } } static void tp_post_events(struct tp_dispatch *tp, uint32_t time) { struct tp_touch *t = tp_current_touch(tp); double dx, dy; if (tp->nfingers_down > 2) { return; } else if (tp->nfingers_down == 2) { tp_post_twofinger_scroll(tp, time); return; } if (tp_tap_handle_state(tp, time) != 0) return; if (t->history.count >= TOUCHPAD_MIN_SAMPLES) { tp_get_delta(t, &dx, &dy); tp_filter_motion(tp, &dx, &dy, time); if (dx != 0 || dy != 0) pointer_notify_motion( &tp->device->base, time, li_fixed_from_double(dx), li_fixed_from_double(dy)); } tp_post_button_events(tp, time); } static void tp_process(struct evdev_dispatch *dispatch, struct evdev_device *device, struct input_event *e, uint32_t time) { struct tp_dispatch *tp = (struct tp_dispatch *)dispatch; switch (e->type) { case EV_ABS: tp_process_absolute(tp, e, time); break; case EV_KEY: tp_process_key(tp, e, time); break; case EV_SYN: tp_process_state(tp, time); tp_post_events(tp, time); tp_post_process_state(tp, time); break; } } static void tp_destroy(struct evdev_dispatch *dispatch) { struct tp_dispatch *tp = (struct tp_dispatch*)dispatch; if (tp->filter) tp->filter->interface->destroy(tp->filter); free(tp->touches); free(tp); } static struct evdev_dispatch_interface tp_interface = { tp_process, tp_destroy }; static int tp_init_slots(struct tp_dispatch *tp, struct evdev_device *device) { struct input_absinfo absinfo = {0}; ioctl(device->fd, EVIOCGABS(ABS_MT_SLOT), &absinfo); tp->ntouches = absinfo.maximum + 1; tp->touches = calloc(tp->ntouches, sizeof(struct tp_touch)); tp->slot = absinfo.value; return 0; } static int tp_init_accel(struct tp_dispatch *touchpad, double diagonal) { struct motion_filter *accel; touchpad->accel.constant_factor = DEFAULT_CONSTANT_ACCEL_NUMERATOR / diagonal; touchpad->accel.min_factor = DEFAULT_MIN_ACCEL_FACTOR; touchpad->accel.max_factor = DEFAULT_MAX_ACCEL_FACTOR; accel = create_pointer_accelator_filter(tp_accel_profile); if (accel == NULL) return -1; touchpad->filter = accel; return 0; } static int tp_init(struct tp_dispatch *tp, struct evdev_device *device) { int width, height; double diagonal; tp->base.interface = &tp_interface; tp->device = device; if (tp_init_slots(tp, device) != 0) return -1; width = abs(device->abs.max_x - device->abs.min_x); height = abs(device->abs.max_y - device->abs.min_y); diagonal = sqrt(width*width + height*height); tp->hysteresis.margin_x = diagonal / DEFAULT_HYSTERESIS_MARGIN_DENOMINATOR; tp->hysteresis.margin_y = diagonal / DEFAULT_HYSTERESIS_MARGIN_DENOMINATOR; if (tp_init_accel(tp, diagonal) != 0) return -1; if (tp_init_tap(tp) != 0) return -1; return 0; } struct evdev_dispatch * evdev_mt_touchpad_create(struct evdev_device *device) { struct tp_dispatch *tp; tp = zalloc(sizeof *tp); if (!tp) return NULL; if (tp_init(tp, device) != 0) { tp_destroy(&tp->base); return NULL; } return &tp->base; }