The only invocations we have right now of these callbacks ignore the
argument or force it to zero. But in the future we may have an interface
that requires a callback and that interface may need to store a
timestamp or object ID in this argument - so let's make sure we have
enough space for that.
Previously we had ei_seat.capabilities and ei_device.capabilities,
both referring to the same enum. The seat caps were used to bind,
the device caps were used to announce capabilities.
The device caps were already mostly superfluous as the information
they carried was implicitly available by the set of interfaces
the device announced - if the device has a keyboard interface
it must also have the keyboard capability.
So let's drop the separate enum and make the capabilities
the set of supported interfaces. In the device we can drop the
event directly and just send the interface list. In the seat
we have a capability event that sends each *possible* interface
with a custom-assigned mask. The client can then use that mask
to bind to the capability as before.
For example:
<- ei_seat.capability(0x1, "ei_pointer")
<- ei_seat.capability(0x4, "ei_keyboard")
<- ei_seat.capability(0x8, "ei_touchscreen")
<- ei_seat.done()
-> ei_seat.bind(0x4 | 0x8) # bind to keyboard and touchscreen
<- ei_seat.device()
-> ei_device.interface("ei_keyboard")
-> ei_device.interface("ei_touchscreen")
<- ei_device.done()
In the generated bindings we simply use the interface index
to generate the masks, but the protocol at least states that
the mask may not be constant.
Because the button/scroll interfaces are not exposed by the C API, some
of the handling is a bit awkward since we need to use both depending
whether we have pointer/pointer_absolute selected.
Fixes#28
Signed-off-by: Peter Hutterer <peter.hutterer@who-t.net>
Split the ei_pointer protocol interface into ei_pointer,
ei_pointer_absolute, ei_scroll and ei_button.
This gets rid of the slightly awkward pointer vs pointer absolute
handling. Those were two different capabilities but tied to the same
interface.
Plus it paves the way for devices that are keyboards with scroll
buttons, etc.
The protocol name on an interface is a fixed string that is part of
the ABI since it's used in a few messages (e.g.
ei_handshake.interface_version). To avoid typos, let's expose that
string in the scanner and #define it in the generated sources.
Since these events are merely notifications of a single object, we can make
this more generic. This allows us to introduce future capabilities without
having to bump the seat.
Regardless of the ei_seat version, ei_seat.bind will support all
capablities of the negotiated ei_device interface. This means we don't need
to bump ei_seat just to add a new capability to ei_device.
This makes generation of files with the scanner a lot more flexible -
e.g. one can run the scanner with
--jinja-extra-data='{ "interface": "ei_connection"}'
and then in the jinja template use an if condition to match on this
interface.
Now that we have 64 bit integers on the wire and 64 bit object IDs,
we're already different to the Wayland protocol. So we might as well get
the full length and split message length and opcode again to make header
parsing and composing simpler.
This effectively reverts commit bf45a7182cb2f4c13f11e141fc846244d3ac6212.
Previously, we'd send one interface_version event for "ei_handshake"
immediately but all others after the client requests handshake.finish.
This was too confusing to document and not clear how it would work, so
let's make this simpler by splitting it up.
There is now a handshake_version event from the server, sent immediately
on connection that denotes the maximum version number for the interface.
And a handshake_version request from the client which must be the first
one by the client.
These were previously (1 << cap) for convenience but that results in the
capability mask on the wire starting at 2 - which is a bit awkward.
Lets shift them down by one so we start the mask at 1.
Add another run to the XML parser so we parse enums before Arguments
that cross-reference enums from other interfaces.
This also fixes a type bug - the enum name string was passed to
Argument.create() as Enum and no-one noticed.