cairo/src/cairo-xlib-visual.c
Chris Wilson 37c69c0d54 [cairo-xlib] Handle malloc failures for cairo_xlib_visual_info_t.
Tidy the error paths whilst handling visuals, in particular avoiding a
couple of potential NULL deferences, missed status checks and fresh
leaks.
2008-04-02 10:50:48 +01:00

148 lines
4.9 KiB
C

/* Cairo - a vector graphics library with display and print output
*
* Copyright © 2008 Red Hat, Inc.
*
* This library is free software; you can redistribute it and/or
* modify it either under the terms of the GNU Lesser General Public
* License version 2.1 as published by the Free Software Foundation
* (the "LGPL") or, at your option, under the terms of the Mozilla
* Public License Version 1.1 (the "MPL"). If you do not alter this
* notice, a recipient may use your version of this file under either
* the MPL or the LGPL.
*
* You should have received a copy of the LGPL along with this library
* in the file COPYING-LGPL-2.1; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
* You should have received a copy of the MPL along with this library
* in the file COPYING-MPL-1.1
*
* The contents of this file are subject to the Mozilla Public License
* Version 1.1 (the "License"); you may not use this file except in
* compliance with the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
* OF ANY KIND, either express or implied. See the LGPL or the MPL for
* the specific language governing rights and limitations.
*
* The Original Code is the cairo graphics library.
*
* The Initial Developer of the Original Code is Red Hat, Inc.
*
* Contributor(s):
* Carl D. Worth <cworth@cworth.org>
*/
#include "cairoint.h"
#include "cairo-xlib-private.h"
/* A perceptual distance metric between two colors. No sqrt needed
* since the square of the distance is still a valid metric. */
/* XXX: This is currently using linear distance in RGB space which is
* decidedly not perceptually linear. If someone cared a lot about the
* quality, they might choose something else here. Then again, they
* might also choose not to use a PseudoColor visual... */
static inline int
_color_distance (unsigned short r1, unsigned short g1, unsigned short b1,
unsigned short r2, unsigned short g2, unsigned short b2)
{
r1 >>= 8; g1 >>= 8; b1 >>= 8;
r2 >>= 8; g2 >>= 8; b2 >>= 8;
return ((r2 - r1) * (r2 - r1) +
(g2 - g1) * (g2 - g1) +
(b2 - b1) * (b2 - b1));
}
cairo_status_t
_cairo_xlib_visual_info_create (Display *dpy,
int screen,
VisualID visualid,
cairo_xlib_visual_info_t **out)
{
cairo_xlib_visual_info_t *info;
Colormap colormap = DefaultColormap (dpy, screen);
XColor color;
int gray, red, green, blue;
int i, index, distance, min_distance = 0;
const unsigned short index5_to_short[5] = {
0x0000, 0x4000, 0x8000, 0xc000, 0xffff
};
const unsigned short index8_to_short[8] = {
0x0000, 0x2492, 0x4924, 0x6db6,
0x9249, 0xb6db, 0xdb6d, 0xffff
};
info = malloc (sizeof (cairo_xlib_visual_info_t));
if (info == NULL)
return _cairo_error (CAIRO_STATUS_NO_MEMORY);
info->visualid = visualid;
/* Allocate a 16-entry gray ramp and a 5x5x5 color cube. Give up
* as soon as failures start. */
for (gray = 0; gray < 16; gray++) {
color.red = (gray << 12) | (gray << 8) | (gray << 4) | gray;
color.green = (gray << 12) | (gray << 8) | (gray << 4) | gray;
color.blue = (gray << 12) | (gray << 8) | (gray << 4) | gray;
if (! XAllocColor (dpy, colormap, &color))
goto DONE_ALLOCATE;
}
/* XXX: Could do this in a more clever order to have the best
* possible results from early failure. Could also choose a cube
* uniformly distributed in a better space than RGB. */
for (red = 0; red < 5; red++) {
for (green = 0; green < 5; green++) {
for (blue = 0; blue < 5; blue++) {
color.red = index5_to_short[red];
color.green = index5_to_short[green];
color.blue = index5_to_short[blue];
color.pixel = 0;
color.flags = 0;
color.pad = 0;
if (! XAllocColor (dpy, colormap, &color))
goto DONE_ALLOCATE;
}
}
}
DONE_ALLOCATE:
for (i = 0; i < ARRAY_LENGTH (info->colors); i++)
info->colors[i].pixel = i;
XQueryColors (dpy, colormap, info->colors, ARRAY_LENGTH (info->colors));
/* Search for nearest colors within allocated colormap. */
for (red = 0; red < 8; red++) {
for (green = 0; green < 8; green++) {
for (blue = 0; blue < 8; blue++) {
index = (red << 6) | (green << 3) | (blue);
for (i = 0; i < 256; i++) {
distance = _color_distance (index8_to_short[red],
index8_to_short[green],
index8_to_short[blue],
info->colors[i].red,
info->colors[i].green,
info->colors[i].blue);
if (i == 0 || distance < min_distance) {
info->rgb333_to_pseudocolor[index] = info->colors[i].pixel;
min_distance = distance;
}
}
}
}
}
*out = info;
return CAIRO_STATUS_SUCCESS;
}
void
_cairo_xlib_visual_info_destroy (Display *dpy, cairo_xlib_visual_info_t *info)
{
/* No need for XFreeColors() whilst using DefaultColormap */
free (info);
}