cairo/src/cairo-path-fixed.c
Chris Wilson 132f44dce1 valgrindify init/fini routines
Annotate object init/fini routines to detect use-after-free for
on-stack/embedded objects.
2009-06-04 14:17:43 +01:00

1264 lines
32 KiB
C

/* -*- Mode: c; tab-width: 8; c-basic-offset: 4; indent-tabs-mode: t; -*- */
/* cairo - a vector graphics library with display and print output
*
* Copyright © 2002 University of Southern California
* Copyright © 2005 Red Hat, Inc.
*
* This library is free software; you can redistribute it and/or
* modify it either under the terms of the GNU Lesser General Public
* License version 2.1 as published by the Free Software Foundation
* (the "LGPL") or, at your option, under the terms of the Mozilla
* Public License Version 1.1 (the "MPL"). If you do not alter this
* notice, a recipient may use your version of this file under either
* the MPL or the LGPL.
*
* You should have received a copy of the LGPL along with this library
* in the file COPYING-LGPL-2.1; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
* You should have received a copy of the MPL along with this library
* in the file COPYING-MPL-1.1
*
* The contents of this file are subject to the Mozilla Public License
* Version 1.1 (the "License"); you may not use this file except in
* compliance with the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
* OF ANY KIND, either express or implied. See the LGPL or the MPL for
* the specific language governing rights and limitations.
*
* The Original Code is the cairo graphics library.
*
* The Initial Developer of the Original Code is University of Southern
* California.
*
* Contributor(s):
* Carl D. Worth <cworth@cworth.org>
*/
#include "cairoint.h"
#include "cairo-path-fixed-private.h"
/* private functions */
static cairo_status_t
_cairo_path_fixed_add (cairo_path_fixed_t *path,
cairo_path_op_t op,
cairo_point_t *points,
int num_points);
static void
_cairo_path_fixed_add_buf (cairo_path_fixed_t *path,
cairo_path_buf_t *buf);
static cairo_path_buf_t *
_cairo_path_buf_create (int buf_size);
static void
_cairo_path_buf_destroy (cairo_path_buf_t *buf);
static void
_cairo_path_buf_add_op (cairo_path_buf_t *buf,
cairo_path_op_t op);
static void
_cairo_path_buf_add_points (cairo_path_buf_t *buf,
cairo_point_t *points,
int num_points);
void
_cairo_path_fixed_init (cairo_path_fixed_t *path)
{
VG (VALGRIND_MAKE_MEM_UNDEFINED (path, sizeof (cairo_path_fixed_t)));
path->buf_head.base.next = NULL;
path->buf_head.base.prev = NULL;
path->buf_tail = &path->buf_head.base;
path->buf_head.base.num_ops = 0;
path->buf_head.base.num_points = 0;
path->buf_head.base.buf_size = CAIRO_PATH_BUF_SIZE;
path->buf_head.base.op = path->buf_head.op;
path->buf_head.base.points = path->buf_head.points;
path->current_point.x = 0;
path->current_point.y = 0;
path->has_current_point = FALSE;
path->has_curve_to = FALSE;
path->last_move_point = path->current_point;
}
cairo_status_t
_cairo_path_fixed_init_copy (cairo_path_fixed_t *path,
cairo_path_fixed_t *other)
{
cairo_path_buf_t *buf, *other_buf;
unsigned int num_points, num_ops, buf_size;
_cairo_path_fixed_init (path);
path->current_point = other->current_point;
path->has_current_point = other->has_current_point;
path->has_curve_to = other->has_curve_to;
path->last_move_point = other->last_move_point;
path->buf_head.base.num_ops = other->buf_head.base.num_ops;
path->buf_head.base.num_points = other->buf_head.base.num_points;
path->buf_head.base.buf_size = other->buf_head.base.buf_size;
memcpy (path->buf_head.op, other->buf_head.base.op,
other->buf_head.base.num_ops * sizeof (other->buf_head.op[0]));
memcpy (path->buf_head.points, other->buf_head.points,
other->buf_head.base.num_points * sizeof (other->buf_head.points[0]));
num_points = num_ops = 0;
for (other_buf = other->buf_head.base.next;
other_buf != NULL;
other_buf = other_buf->next)
{
num_ops += other_buf->num_ops;
num_points += other_buf->num_points;
}
buf_size = MAX (num_ops, (num_points + 1) / 2);
if (buf_size) {
buf = _cairo_path_buf_create (buf_size);
if (unlikely (buf == NULL)) {
_cairo_path_fixed_fini (path);
return _cairo_error (CAIRO_STATUS_NO_MEMORY);
}
for (other_buf = other->buf_head.base.next;
other_buf != NULL;
other_buf = other_buf->next)
{
memcpy (buf->op + buf->num_ops, other_buf->op,
other_buf->num_ops * sizeof (buf->op[0]));
buf->num_ops += other_buf->num_ops;
memcpy (buf->points + buf->num_points, other_buf->points,
other_buf->num_points * sizeof (buf->points[0]));
buf->num_points += other_buf->num_points;
}
_cairo_path_fixed_add_buf (path, buf);
}
return CAIRO_STATUS_SUCCESS;
}
unsigned long
_cairo_path_fixed_hash (const cairo_path_fixed_t *path)
{
unsigned long hash = 0;
const cairo_path_buf_t *buf;
int num_points, num_ops;
hash = _cairo_hash_bytes (hash,
&path->current_point,
sizeof (path->current_point));
hash = _cairo_hash_bytes (hash,
&path->last_move_point,
sizeof (path->last_move_point));
num_ops = path->buf_head.base.num_ops;
num_points = path->buf_head.base.num_points;
for (buf = path->buf_head.base.next;
buf != NULL;
buf = buf->next)
{
hash = _cairo_hash_bytes (hash, buf->op,
buf->num_ops * sizeof (buf->op[0]));
hash = _cairo_hash_bytes (hash, buf->points,
buf->num_points * sizeof (buf->points[0]));
num_ops += buf->num_ops;
num_points += buf->num_points;
}
hash = _cairo_hash_bytes (hash, &num_ops, sizeof (num_ops));
hash = _cairo_hash_bytes (hash, &num_points, sizeof (num_points));
return hash;
}
unsigned long
_cairo_path_fixed_size (const cairo_path_fixed_t *path)
{
const cairo_path_buf_t *buf;
int num_points, num_ops;
num_ops = path->buf_head.base.num_ops;
num_points = path->buf_head.base.num_points;
for (buf = path->buf_head.base.next;
buf != NULL;
buf = buf->next)
{
num_ops += buf->num_ops;
num_points += buf->num_points;
}
return num_ops * sizeof (buf->op[0]) +
num_points * sizeof (buf->points[0]);
}
cairo_bool_t
_cairo_path_fixed_equal (const cairo_path_fixed_t *a,
const cairo_path_fixed_t *b)
{
const cairo_path_buf_t *buf_a, *buf_b;
const cairo_path_op_t *ops_a, *ops_b;
const cairo_point_t *points_a, *points_b;
int num_points_a, num_ops_a;
int num_points_b, num_ops_b;
if (a == b)
return TRUE;
if (a != NULL) {
num_ops_a = a->buf_head.base.num_ops;
num_points_a = a->buf_head.base.num_points;
for (buf_a = a->buf_head.base.next;
buf_a != NULL;
buf_a = buf_a->next)
{
num_ops_a += buf_a->num_ops;
num_points_a += buf_a->num_points;
}
} else
num_ops_a = num_points_a = 0;
if (b != NULL) {
num_ops_b = b->buf_head.base.num_ops;
num_points_b = b->buf_head.base.num_points;
for (buf_b = b->buf_head.base.next;
buf_b != NULL;
buf_b = buf_b->next)
{
num_ops_b += buf_b->num_ops;
num_points_b += buf_b->num_points;
}
} else
num_ops_b = num_points_b = 0;
if (num_ops_a == 0 && num_ops_b == 0)
return TRUE;
if (num_ops_a != num_ops_b || num_points_a != num_points_b)
return FALSE;
assert (a != NULL && b != NULL);
buf_a = &a->buf_head.base;
num_points_a = buf_a->num_points;
num_ops_a = buf_a->num_ops;
ops_a = buf_a->op;
points_a = buf_a->points;
buf_b = &b->buf_head.base;
num_points_b = buf_b->num_points;
num_ops_b = buf_b->num_ops;
ops_b = buf_b->op;
points_b = buf_b->points;
while (TRUE) {
int num_ops = MIN (num_ops_a, num_ops_b);
int num_points = MIN (num_points_a, num_points_b);
if (memcmp (ops_a, ops_b, num_ops * sizeof (cairo_path_op_t)))
return FALSE;
if (memcmp (points_a, points_b, num_points * sizeof (cairo_point_t)))
return FALSE;
num_ops_a -= num_ops;
ops_a += num_ops;
num_points_a -= num_points;
points_a += num_points;
if (num_ops_a == 0 || num_points_a == 0) {
if (num_ops_a || num_points_a)
return FALSE;
buf_a = buf_a->next;
if (buf_a == NULL)
break;
num_points_a = buf_a->num_points;
num_ops_a = buf_a->num_ops;
ops_a = buf_a->op;
points_a = buf_a->points;
}
num_ops_b -= num_ops;
ops_b += num_ops;
num_points_b -= num_points;
points_b += num_points;
if (num_ops_b == 0 || num_points_b == 0) {
if (num_ops_b || num_points_b)
return FALSE;
buf_b = buf_b->next;
if (buf_b == NULL)
break;
num_points_b = buf_b->num_points;
num_ops_b = buf_b->num_ops;
ops_b = buf_b->op;
points_b = buf_b->points;
}
}
return TRUE;
}
cairo_path_fixed_t *
_cairo_path_fixed_create (void)
{
cairo_path_fixed_t *path;
path = malloc (sizeof (cairo_path_fixed_t));
if (!path) {
_cairo_error_throw (CAIRO_STATUS_NO_MEMORY);
return NULL;
}
_cairo_path_fixed_init (path);
return path;
}
void
_cairo_path_fixed_fini (cairo_path_fixed_t *path)
{
cairo_path_buf_t *buf;
buf = path->buf_head.base.next;
while (buf) {
cairo_path_buf_t *this = buf;
buf = buf->next;
_cairo_path_buf_destroy (this);
}
VG (VALGRIND_MAKE_MEM_NOACCESS (path, sizeof (cairo_path_fixed_t)));
}
void
_cairo_path_fixed_destroy (cairo_path_fixed_t *path)
{
_cairo_path_fixed_fini (path);
free (path);
}
cairo_status_t
_cairo_path_fixed_move_to (cairo_path_fixed_t *path,
cairo_fixed_t x,
cairo_fixed_t y)
{
cairo_status_t status;
cairo_point_t point;
point.x = x;
point.y = y;
/* If the previous op was also a MOVE_TO, then just change its
* point rather than adding a new op. */
if (path->buf_tail && path->buf_tail->num_ops &&
path->buf_tail->op[path->buf_tail->num_ops - 1] == CAIRO_PATH_OP_MOVE_TO)
{
cairo_point_t *last_move_to_point;
last_move_to_point = &path->buf_tail->points[path->buf_tail->num_points - 1];
*last_move_to_point = point;
} else {
status = _cairo_path_fixed_add (path, CAIRO_PATH_OP_MOVE_TO, &point, 1);
if (unlikely (status))
return status;
}
path->current_point = point;
path->has_current_point = TRUE;
path->last_move_point = path->current_point;
return CAIRO_STATUS_SUCCESS;
}
void
_cairo_path_fixed_new_sub_path (cairo_path_fixed_t *path)
{
path->has_current_point = FALSE;
}
cairo_status_t
_cairo_path_fixed_rel_move_to (cairo_path_fixed_t *path,
cairo_fixed_t dx,
cairo_fixed_t dy)
{
cairo_fixed_t x, y;
if (! path->has_current_point)
return _cairo_error (CAIRO_STATUS_NO_CURRENT_POINT);
x = path->current_point.x + dx;
y = path->current_point.y + dy;
return _cairo_path_fixed_move_to (path, x, y);
}
cairo_status_t
_cairo_path_fixed_line_to (cairo_path_fixed_t *path,
cairo_fixed_t x,
cairo_fixed_t y)
{
cairo_status_t status;
cairo_point_t point;
point.x = x;
point.y = y;
/* When there is not yet a current point, the line_to operation
* becomes a move_to instead. Note: We have to do this by
* explicitly calling into _cairo_path_fixed_line_to to ensure
* that the last_move_point state is updated properly.
*/
if (! path->has_current_point)
status = _cairo_path_fixed_move_to (path, point.x, point.y);
else
status = _cairo_path_fixed_add (path, CAIRO_PATH_OP_LINE_TO, &point, 1);
if (unlikely (status))
return status;
path->current_point = point;
path->has_current_point = TRUE;
return CAIRO_STATUS_SUCCESS;
}
cairo_status_t
_cairo_path_fixed_rel_line_to (cairo_path_fixed_t *path,
cairo_fixed_t dx,
cairo_fixed_t dy)
{
cairo_fixed_t x, y;
if (! path->has_current_point)
return _cairo_error (CAIRO_STATUS_NO_CURRENT_POINT);
x = path->current_point.x + dx;
y = path->current_point.y + dy;
return _cairo_path_fixed_line_to (path, x, y);
}
cairo_status_t
_cairo_path_fixed_curve_to (cairo_path_fixed_t *path,
cairo_fixed_t x0, cairo_fixed_t y0,
cairo_fixed_t x1, cairo_fixed_t y1,
cairo_fixed_t x2, cairo_fixed_t y2)
{
cairo_status_t status;
cairo_point_t point[3];
point[0].x = x0; point[0].y = y0;
point[1].x = x1; point[1].y = y1;
point[2].x = x2; point[2].y = y2;
if (! path->has_current_point) {
status = _cairo_path_fixed_add (path, CAIRO_PATH_OP_MOVE_TO,
&point[0], 1);
if (unlikely (status))
return status;
}
status = _cairo_path_fixed_add (path, CAIRO_PATH_OP_CURVE_TO, point, 3);
if (unlikely (status))
return status;
path->current_point = point[2];
path->has_current_point = TRUE;
path->has_curve_to = TRUE;
return CAIRO_STATUS_SUCCESS;
}
cairo_status_t
_cairo_path_fixed_rel_curve_to (cairo_path_fixed_t *path,
cairo_fixed_t dx0, cairo_fixed_t dy0,
cairo_fixed_t dx1, cairo_fixed_t dy1,
cairo_fixed_t dx2, cairo_fixed_t dy2)
{
cairo_fixed_t x0, y0;
cairo_fixed_t x1, y1;
cairo_fixed_t x2, y2;
if (! path->has_current_point)
return _cairo_error (CAIRO_STATUS_NO_CURRENT_POINT);
x0 = path->current_point.x + dx0;
y0 = path->current_point.y + dy0;
x1 = path->current_point.x + dx1;
y1 = path->current_point.y + dy1;
x2 = path->current_point.x + dx2;
y2 = path->current_point.y + dy2;
return _cairo_path_fixed_curve_to (path,
x0, y0,
x1, y1,
x2, y2);
}
cairo_status_t
_cairo_path_fixed_close_path (cairo_path_fixed_t *path)
{
cairo_status_t status;
if (! path->has_current_point)
return CAIRO_STATUS_SUCCESS;
status = _cairo_path_fixed_add (path, CAIRO_PATH_OP_CLOSE_PATH, NULL, 0);
if (unlikely (status))
return status;
status = _cairo_path_fixed_move_to (path,
path->last_move_point.x,
path->last_move_point.y);
if (unlikely (status))
return status;
return CAIRO_STATUS_SUCCESS;
}
cairo_bool_t
_cairo_path_fixed_get_current_point (cairo_path_fixed_t *path,
cairo_fixed_t *x,
cairo_fixed_t *y)
{
if (! path->has_current_point)
return FALSE;
*x = path->current_point.x;
*y = path->current_point.y;
return TRUE;
}
static cairo_status_t
_cairo_path_fixed_add (cairo_path_fixed_t *path,
cairo_path_op_t op,
cairo_point_t *points,
int num_points)
{
cairo_path_buf_t *buf = path->buf_tail;
if (buf->num_ops + 1 > buf->buf_size ||
buf->num_points + num_points > 2 * buf->buf_size)
{
buf = _cairo_path_buf_create (buf->buf_size * 2);
if (unlikely (buf == NULL))
return _cairo_error (CAIRO_STATUS_NO_MEMORY);
_cairo_path_fixed_add_buf (path, buf);
}
_cairo_path_buf_add_op (buf, op);
_cairo_path_buf_add_points (buf, points, num_points);
return CAIRO_STATUS_SUCCESS;
}
static void
_cairo_path_fixed_add_buf (cairo_path_fixed_t *path,
cairo_path_buf_t *buf)
{
buf->next = NULL;
buf->prev = path->buf_tail;
path->buf_tail->next = buf;
path->buf_tail = buf;
}
static cairo_path_buf_t *
_cairo_path_buf_create (int buf_size)
{
cairo_path_buf_t *buf;
/* adjust buf_size to ensure that buf->points is naturally aligned */
buf_size += sizeof (double)
- ((buf_size + sizeof (cairo_path_buf_t)) & (sizeof (double)-1));
buf = _cairo_malloc_ab_plus_c (buf_size,
sizeof (cairo_path_op_t) +
2 * sizeof (cairo_point_t),
sizeof (cairo_path_buf_t));
if (buf) {
buf->next = NULL;
buf->prev = NULL;
buf->num_ops = 0;
buf->num_points = 0;
buf->buf_size = buf_size;
buf->op = (cairo_path_op_t *) (buf + 1);
buf->points = (cairo_point_t *) (buf->op + buf_size);
}
return buf;
}
static void
_cairo_path_buf_destroy (cairo_path_buf_t *buf)
{
free (buf);
}
static void
_cairo_path_buf_add_op (cairo_path_buf_t *buf,
cairo_path_op_t op)
{
buf->op[buf->num_ops++] = op;
}
static void
_cairo_path_buf_add_points (cairo_path_buf_t *buf,
cairo_point_t *points,
int num_points)
{
int i;
for (i=0; i < num_points; i++) {
buf->points[buf->num_points++] = points[i];
}
}
static int const num_args[] =
{
1, /* cairo_path_move_to */
1, /* cairo_path_op_line_to */
3, /* cairo_path_op_curve_to */
0, /* cairo_path_op_close_path */
};
cairo_status_t
_cairo_path_fixed_interpret (const cairo_path_fixed_t *path,
cairo_direction_t dir,
cairo_path_fixed_move_to_func_t *move_to,
cairo_path_fixed_line_to_func_t *line_to,
cairo_path_fixed_curve_to_func_t *curve_to,
cairo_path_fixed_close_path_func_t *close_path,
void *closure)
{
cairo_status_t status;
const cairo_path_buf_t *buf;
cairo_path_op_t op;
cairo_bool_t forward = (dir == CAIRO_DIRECTION_FORWARD);
int step = forward ? 1 : -1;
for (buf = forward ? &path->buf_head.base : path->buf_tail;
buf;
buf = forward ? buf->next : buf->prev)
{
cairo_point_t *points;
int start, stop, i;
if (forward) {
start = 0;
stop = buf->num_ops;
points = buf->points;
} else {
start = buf->num_ops - 1;
stop = -1;
points = buf->points + buf->num_points;
}
for (i=start; i != stop; i += step) {
op = buf->op[i];
if (! forward) {
points -= num_args[(int) op];
}
switch (op) {
case CAIRO_PATH_OP_MOVE_TO:
status = (*move_to) (closure, &points[0]);
break;
case CAIRO_PATH_OP_LINE_TO:
status = (*line_to) (closure, &points[0]);
break;
case CAIRO_PATH_OP_CURVE_TO:
status = (*curve_to) (closure, &points[0], &points[1], &points[2]);
break;
case CAIRO_PATH_OP_CLOSE_PATH:
default:
status = (*close_path) (closure);
break;
}
if (unlikely (status))
return status;
if (forward) {
points += num_args[(int) op];
}
}
}
return CAIRO_STATUS_SUCCESS;
}
static cairo_status_t
_append_move_to (void *closure,
const cairo_point_t *point)
{
cairo_path_fixed_t *path = (cairo_path_fixed_t *) closure;
return _cairo_path_fixed_move_to (path, point->x, point->y);
}
static cairo_status_t
_append_line_to (void *closure,
const cairo_point_t *point)
{
cairo_path_fixed_t *path = (cairo_path_fixed_t *) closure;
return _cairo_path_fixed_line_to (path, point->x, point->y);
}
static cairo_status_t
_append_curve_to (void *closure,
const cairo_point_t *p0,
const cairo_point_t *p1,
const cairo_point_t *p2)
{
cairo_path_fixed_t *path = (cairo_path_fixed_t *) closure;
return _cairo_path_fixed_curve_to (path, p0->x, p0->y, p1->x, p1->y, p2->x, p2->y);
}
static cairo_status_t
_append_close_path (void *closure)
{
cairo_path_fixed_t *path = (cairo_path_fixed_t *) closure;
return _cairo_path_fixed_close_path (path);
}
cairo_status_t
_cairo_path_fixed_append (cairo_path_fixed_t *path,
const cairo_path_fixed_t *other,
cairo_direction_t dir)
{
return _cairo_path_fixed_interpret (other, dir,
_append_move_to,
_append_line_to,
_append_curve_to,
_append_close_path,
path);
}
static void
_cairo_path_fixed_offset_and_scale (cairo_path_fixed_t *path,
cairo_fixed_t offx,
cairo_fixed_t offy,
cairo_fixed_t scalex,
cairo_fixed_t scaley)
{
cairo_path_buf_t *buf = &path->buf_head.base;
unsigned int i;
while (buf) {
for (i = 0; i < buf->num_points; i++) {
if (scalex != CAIRO_FIXED_ONE)
buf->points[i].x = _cairo_fixed_mul (buf->points[i].x, scalex);
buf->points[i].x += offx;
if (scaley != CAIRO_FIXED_ONE)
buf->points[i].y = _cairo_fixed_mul (buf->points[i].y, scaley);
buf->points[i].y += offy;
}
buf = buf->next;
}
}
/**
* _cairo_path_fixed_transform:
* @path: a #cairo_path_fixed_t to be transformed
* @matrix: a #cairo_matrix_t
*
* Transform the fixed-point path according to the given matrix.
* There is a fast path for the case where @matrix has no rotation
* or shear.
**/
void
_cairo_path_fixed_transform (cairo_path_fixed_t *path,
cairo_matrix_t *matrix)
{
cairo_path_buf_t *buf;
unsigned int i;
double dx, dy;
if (matrix->yx == 0.0 && matrix->xy == 0.0) {
/* Fast path for the common case of scale+transform */
_cairo_path_fixed_offset_and_scale (path,
_cairo_fixed_from_double (matrix->x0),
_cairo_fixed_from_double (matrix->y0),
_cairo_fixed_from_double (matrix->xx),
_cairo_fixed_from_double (matrix->yy));
return;
}
buf = &path->buf_head.base;
while (buf) {
for (i = 0; i < buf->num_points; i++) {
dx = _cairo_fixed_to_double (buf->points[i].x);
dy = _cairo_fixed_to_double (buf->points[i].y);
cairo_matrix_transform_point (matrix, &dx, &dy);
buf->points[i].x = _cairo_fixed_from_double (dx);
buf->points[i].y = _cairo_fixed_from_double (dy);
}
buf = buf->next;
}
}
cairo_bool_t
_cairo_path_fixed_is_equal (cairo_path_fixed_t *path,
cairo_path_fixed_t *other)
{
cairo_path_buf_t *path_buf, *other_buf;
if (path->current_point.x != other->current_point.x ||
path->current_point.y != other->current_point.y ||
path->has_current_point != other->has_current_point ||
path->has_curve_to != other->has_curve_to ||
path->last_move_point.x != other->last_move_point.x ||
path->last_move_point.y != other->last_move_point.y)
return FALSE;
other_buf = &other->buf_head.base;
for (path_buf = &path->buf_head.base;
path_buf != NULL;
path_buf = path_buf->next)
{
if (other_buf == NULL ||
path_buf->num_ops != other_buf->num_ops ||
path_buf->num_points != other_buf->num_points ||
memcmp (path_buf->op, other_buf->op,
sizeof (cairo_path_op_t) * path_buf->num_ops) != 0 ||
memcmp (path_buf->points, other_buf->points,
sizeof (cairo_point_t) * path_buf->num_points) != 0)
{
return FALSE;
}
other_buf = other_buf->next;
}
return TRUE;
}
/* Closure for path flattening */
typedef struct cairo_path_flattener {
double tolerance;
cairo_point_t current_point;
cairo_path_fixed_move_to_func_t *move_to;
cairo_path_fixed_line_to_func_t *line_to;
cairo_path_fixed_close_path_func_t *close_path;
void *closure;
} cpf_t;
static cairo_status_t
_cpf_move_to (void *closure,
const cairo_point_t *point)
{
cpf_t *cpf = closure;
cpf->current_point = *point;
return cpf->move_to (cpf->closure, point);
}
static cairo_status_t
_cpf_line_to (void *closure,
const cairo_point_t *point)
{
cpf_t *cpf = closure;
cpf->current_point = *point;
return cpf->line_to (cpf->closure, point);
}
static cairo_status_t
_cpf_curve_to (void *closure,
const cairo_point_t *p1,
const cairo_point_t *p2,
const cairo_point_t *p3)
{
cpf_t *cpf = closure;
cairo_spline_t spline;
cairo_point_t *p0 = &cpf->current_point;
if (! _cairo_spline_init (&spline,
cpf->line_to,
cpf->closure,
p0, p1, p2, p3))
{
return _cpf_line_to (closure, p3);
}
cpf->current_point = *p3;
return _cairo_spline_decompose (&spline, cpf->tolerance);
}
static cairo_status_t
_cpf_close_path (void *closure)
{
cpf_t *cpf = closure;
return cpf->close_path (cpf->closure);
}
cairo_status_t
_cairo_path_fixed_interpret_flat (const cairo_path_fixed_t *path,
cairo_direction_t dir,
cairo_path_fixed_move_to_func_t *move_to,
cairo_path_fixed_line_to_func_t *line_to,
cairo_path_fixed_close_path_func_t *close_path,
void *closure,
double tolerance)
{
cpf_t flattener;
if (!path->has_curve_to) {
return _cairo_path_fixed_interpret (path, dir,
move_to,
line_to,
NULL,
close_path,
closure);
}
flattener.tolerance = tolerance;
flattener.move_to = move_to;
flattener.line_to = line_to;
flattener.close_path = close_path;
flattener.closure = closure;
return _cairo_path_fixed_interpret (path, dir,
_cpf_move_to,
_cpf_line_to,
_cpf_curve_to,
_cpf_close_path,
&flattener);
}
cairo_bool_t
_cairo_path_fixed_is_empty (cairo_path_fixed_t *path)
{
if (path->buf_head.base.num_ops == 0)
return TRUE;
return FALSE;
}
/*
* Check whether the given path contains a single rectangle.
*/
cairo_bool_t
_cairo_path_fixed_is_box (cairo_path_fixed_t *path,
cairo_box_t *box)
{
cairo_path_buf_t *buf = &path->buf_head.base;
/* We can't have more than one buf for this check */
if (buf->next != NULL)
return FALSE;
/* Do we have the right number of ops? */
if (buf->num_ops != 5 && buf->num_ops != 6)
return FALSE;
/* Check whether the ops are those that would be used for a rectangle */
if (buf->op[0] != CAIRO_PATH_OP_MOVE_TO ||
buf->op[1] != CAIRO_PATH_OP_LINE_TO ||
buf->op[2] != CAIRO_PATH_OP_LINE_TO ||
buf->op[3] != CAIRO_PATH_OP_LINE_TO)
{
return FALSE;
}
/* Now, there are choices. The rectangle might end with a LINE_TO
* (to the original point), but this isn't required. If it
* doesn't, then it must end with a CLOSE_PATH. */
if (buf->op[4] == CAIRO_PATH_OP_LINE_TO) {
if (buf->points[4].x != buf->points[0].x ||
buf->points[4].y != buf->points[0].y)
return FALSE;
} else if (buf->op[4] != CAIRO_PATH_OP_CLOSE_PATH) {
return FALSE;
}
if (buf->num_ops == 6) {
/* A trailing CLOSE_PATH or MOVE_TO is ok */
if (buf->op[5] != CAIRO_PATH_OP_MOVE_TO &&
buf->op[5] != CAIRO_PATH_OP_CLOSE_PATH)
return FALSE;
}
/* Ok, we may have a box, if the points line up */
if (buf->points[0].y == buf->points[1].y &&
buf->points[1].x == buf->points[2].x &&
buf->points[2].y == buf->points[3].y &&
buf->points[3].x == buf->points[0].x)
{
box->p1 = buf->points[0];
box->p2 = buf->points[2];
return TRUE;
}
if (buf->points[0].x == buf->points[1].x &&
buf->points[1].y == buf->points[2].y &&
buf->points[2].x == buf->points[3].x &&
buf->points[3].y == buf->points[0].y)
{
box->p1 = buf->points[0];
box->p2 = buf->points[2];
return TRUE;
}
return FALSE;
}
/*
* Check whether the given path contains a single rectangle
* that is logically equivalent to:
* <informalexample><programlisting>
* cairo_move_to (cr, x, y);
* cairo_rel_line_to (cr, width, 0);
* cairo_rel_line_to (cr, 0, height);
* cairo_rel_line_to (cr, -width, 0);
* cairo_close_path (cr);
* </programlisting></informalexample>
*/
cairo_bool_t
_cairo_path_fixed_is_rectangle (cairo_path_fixed_t *path,
cairo_box_t *box)
{
cairo_path_buf_t *buf = &path->buf_head.base;
if (!_cairo_path_fixed_is_box (path, box))
return FALSE;
if (buf->points[0].y == buf->points[1].y)
return TRUE;
return FALSE;
}
void
_cairo_path_fixed_iter_init (cairo_path_fixed_iter_t *iter,
cairo_path_fixed_t *path)
{
iter->buf = &path->buf_head.base;
iter->n_op = 0;
iter->n_point = 0;
}
static cairo_bool_t
_cairo_path_fixed_iter_next_op (cairo_path_fixed_iter_t *iter)
{
if (++iter->n_op >= iter->buf->num_ops) {
iter->buf = iter->buf->next;
iter->n_op = 0;
iter->n_point = 0;
}
return iter->buf != NULL;
}
cairo_bool_t
_cairo_path_fixed_iter_is_fill_box (cairo_path_fixed_iter_t *_iter,
cairo_box_t *box)
{
cairo_point_t points[5];
cairo_path_fixed_iter_t iter;
if (_iter->buf == NULL)
return FALSE;
iter = *_iter;
if (iter.n_op == iter.buf->num_ops &&
! _cairo_path_fixed_iter_next_op (&iter))
{
return FALSE;
}
/* Check whether the ops are those that would be used for a rectangle */
if (iter.buf->op[iter.n_op] != CAIRO_PATH_OP_MOVE_TO)
return FALSE;
points[0] = iter.buf->points[iter.n_point++];
if (! _cairo_path_fixed_iter_next_op (&iter))
return FALSE;
if (iter.buf->op[iter.n_op] != CAIRO_PATH_OP_LINE_TO)
return FALSE;
points[1] = iter.buf->points[iter.n_point++];
if (! _cairo_path_fixed_iter_next_op (&iter))
return FALSE;
if (iter.buf->op[iter.n_op] != CAIRO_PATH_OP_LINE_TO)
return FALSE;
points[2] = iter.buf->points[iter.n_point++];
if (! _cairo_path_fixed_iter_next_op (&iter))
return FALSE;
if (iter.buf->op[iter.n_op] != CAIRO_PATH_OP_LINE_TO)
return FALSE;
points[3] = iter.buf->points[iter.n_point++];
if (! _cairo_path_fixed_iter_next_op (&iter))
return FALSE;
/* Now, there are choices. The rectangle might end with a LINE_TO
* (to the original point), but this isn't required. If it
* doesn't, then it must end with a CLOSE_PATH (which may be implicit). */
if (iter.buf->op[iter.n_op] == CAIRO_PATH_OP_LINE_TO)
{
points[4] = iter.buf->points[iter.n_point++];
if (points[4].x != points[0].x || points[4].y != points[0].y)
return FALSE;
}
else if (! (iter.buf->op[iter.n_op] == CAIRO_PATH_OP_CLOSE_PATH ||
iter.buf->op[iter.n_op] == CAIRO_PATH_OP_MOVE_TO))
{
return FALSE;
}
if (! _cairo_path_fixed_iter_next_op (&iter))
return FALSE;
/* Ok, we may have a box, if the points line up */
if (points[0].y == points[1].y &&
points[1].x == points[2].x &&
points[2].y == points[3].y &&
points[3].x == points[0].x)
{
box->p1 = points[0];
box->p2 = points[2];
*_iter = iter;
return TRUE;
}
if (points[0].x == points[1].x &&
points[1].y == points[2].y &&
points[2].x == points[3].x &&
points[3].y == points[0].y)
{
box->p1 = points[0];
box->p2 = points[2];
*_iter = iter;
return TRUE;
}
return FALSE;
}
cairo_bool_t
_cairo_path_fixed_iter_at_end (const cairo_path_fixed_iter_t *iter)
{
if (iter->buf == NULL)
return TRUE;
if (iter->n_op == iter->buf->num_ops)
return TRUE;
if (iter->buf->op[iter->n_op] == CAIRO_PATH_OP_MOVE_TO &&
iter->buf->num_ops == iter->n_op + 1)
{
return TRUE;
}
return FALSE;
}
/* Closure for path region testing. Every move_to must be to integer
* coordinates, there must be no curves, and every line_to or
* close_path must represent an axis aligned line to an integer point.
* We're relying on the path interpreter always sending a single
* move_to at the start of any subpath, not receiving having any
* superfluous move_tos, and the path intepreter bailing with our
* first non-successful error. */
typedef struct cairo_path_region_tester {
cairo_point_t last_move_point;
cairo_point_t current_point;
} cprt_t;
static cairo_status_t
_cprt_line_to (void *closure,
const cairo_point_t *p2)
{
cprt_t *self = closure;
cairo_point_t *p1 = &self->current_point;
if (p2->x == p1->x) {
if (_cairo_fixed_is_integer (p2->y)) {
p1->y = p2->y;
return CAIRO_STATUS_SUCCESS;
}
} else if (p2->y == p1->y) {
if (_cairo_fixed_is_integer (p2->x)) {
p1->x = p2->x;
return CAIRO_STATUS_SUCCESS;
}
}
return CAIRO_INT_STATUS_UNSUPPORTED;
}
static cairo_status_t
_cprt_close_path (void *closure)
{
cprt_t *self = closure;
return _cprt_line_to (closure, &self->last_move_point);
}
static cairo_status_t
_cprt_move_to (void *closure,
const cairo_point_t *p)
{
cprt_t *self = closure;
cairo_status_t status;
status = _cprt_close_path (closure);
if (status)
return status;
if (_cairo_fixed_is_integer (p->x) && _cairo_fixed_is_integer (p->y)) {
self->current_point = *p;
self->last_move_point = *p;
return CAIRO_STATUS_SUCCESS;
}
return CAIRO_INT_STATUS_UNSUPPORTED;
}
/*
* Check whether the given path is representable as a region.
* That is, if the path contains only axis aligned lines between
* integer coordinates in device space.
*/
cairo_bool_t
_cairo_path_fixed_is_region (cairo_path_fixed_t *path)
{
cprt_t cprt;
if (path->has_curve_to)
return FALSE;
cprt.current_point.x = 0;
cprt.current_point.y = 0;
cprt.last_move_point.x = 0;
cprt.last_move_point.y = 0;
return _cairo_path_fixed_interpret (path,
CAIRO_DIRECTION_FORWARD,
_cprt_move_to,
_cprt_line_to,
NULL,
_cprt_close_path,
&cprt) == CAIRO_STATUS_SUCCESS;
}