cairo/src/cairo_cache.c
Alexander Larsson 5c1c5e67dc Add _cairo_gstate_restore_external_state, _cairo_fixed_integer_floor and _cairo_fixed_integer_ceil.
Call _cairo_gstate_restore_external_state on restore.
Fix cache-misses.
Implement floor and ceil
Restore surface clip region on restroe.
(_calculate_region_for_intermediate_clip_surface), (_cairo_gstate_clip_and_composite_trapezoids), (_cairo_gstate_show_surface), (_cairo_gstate_show_glyphs): Create intermediate clip surfaces of the minimal required size.
2004-12-20 09:43:59 +00:00

452 lines
13 KiB
C

/* cairo - a vector graphics library with display and print output
*
* This file is Copyright © 2004 Red Hat, Inc.
*
* This library is free software; you can redistribute it and/or
* modify it either under the terms of the GNU Lesser General Public
* License version 2.1 as published by the Free Software Foundation
* (the "LGPL") or, at your option, under the terms of the Mozilla
* Public License Version 1.1 (the "MPL"). If you do not alter this
* notice, a recipient may use your version of this file under either
* the MPL or the LGPL.
*
* You should have received a copy of the LGPL along with this library
* in the file COPYING-LGPL-2.1; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
* You should have received a copy of the MPL along with this library
* in the file COPYING-MPL-1.1
*
* The contents of this file are subject to the Mozilla Public License
* Version 1.1 (the "License"); you may not use this file except in
* compliance with the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
* OF ANY KIND, either express or implied. See the LGPL or the MPL for
* the specific language governing rights and limitations.
*
* The Original Code is the cairo graphics library.
*
* The Initial Developer of the Original Code is Red Hat, Inc.
*
* Contributor(s):
* Keith Packard
* Graydon Hoare <graydon@redhat.com>
*/
#include "cairoint.h"
/*
* This structure, and accompanying table, is borrowed/modified from the
* file xserver/render/glyph.c in the freedesktop.org x server, with
* permission (and suggested modification of doubling sizes) by Keith
* Packard.
*/
static const cairo_cache_arrangement_t cache_arrangements [] = {
{ 16, 43, 41 },
{ 32, 73, 71 },
{ 64, 151, 149 },
{ 128, 283, 281 },
{ 256, 571, 569 },
{ 512, 1153, 1151 },
{ 1024, 2269, 2267 },
{ 2048, 4519, 4517 },
{ 4096, 9013, 9011 },
{ 8192, 18043, 18041 },
{ 16384, 36109, 36107 },
{ 32768, 72091, 72089 },
{ 65536, 144409, 144407 },
{ 131072, 288361, 288359 },
{ 262144, 576883, 576881 },
{ 524288, 1153459, 1153457 },
{ 1048576, 2307163, 2307161 },
{ 2097152, 4613893, 4613891 },
{ 4194304, 9227641, 9227639 },
{ 8388608, 18455029, 18455027 },
{ 16777216, 36911011, 36911009 },
{ 33554432, 73819861, 73819859 },
{ 67108864, 147639589, 147639587 },
{ 134217728, 295279081, 295279079 },
{ 268435456, 590559793, 590559791 }
};
#define N_CACHE_SIZES (sizeof(cache_arrangements)/sizeof(cache_arrangements[0]))
/*
* Entries 'e' are poiners, in one of 3 states:
*
* e == NULL: The entry has never had anything put in it
* e != DEAD_ENTRY: The entry has an active value in it currently
* e == DEAD_ENTRY: The entry *had* a value in it at some point, but the
* entry has been killed. Lookups requesting free space can
* reuse these entries; lookups requesting a precise match
* should neither return these entries nor stop searching when
* seeing these entries.
*
* We expect keys will not be destroyed frequently, so our table does not
* contain any explicit shrinking code nor any chain-coalescing code for
* entries randomly deleted by memory pressure (except during rehashing, of
* course). These assumptions are potentially bad, but they make the
* implementation straightforward.
*
* Revisit later if evidence appears that we're using excessive memory from
* a mostly-dead table.
*
* Generally you do not need to worry about freeing cache entries; the
* cache will expire entries randomly as it experiences memory pressure.
* There is currently no explicit entry-removing call, though one can be
* added easily.
*
* This table is open-addressed with double hashing. Each table size is a
* prime chosen to be a little more than double the high water mark for a
* given arrangement, so the tables should remain < 50% full. The table
* size makes for the "first" hash modulus; a second prime (2 less than the
* first prime) serves as the "second" hash modulus, which is co-prime and
* thus guarantees a complete permutation of table indices.
*
*/
#define DEAD_ENTRY ((cairo_cache_entry_base_t *) 1)
#define NULL_ENTRY_P(cache, i) ((cache)->entries[i] == NULL)
#define DEAD_ENTRY_P(cache, i) ((cache)->entries[i] == DEAD_ENTRY)
#define LIVE_ENTRY_P(cache, i) \
(!((NULL_ENTRY_P((cache),(i))) || (DEAD_ENTRY_P((cache),(i)))))
#ifdef CAIRO_DO_SANITY_CHECKING
static void
_cache_sane_state (cairo_cache_t *cache)
{
assert (cache != NULL);
assert (cache->entries != NULL);
assert (cache->backend != NULL);
assert (cache->arrangement != NULL);
assert (cache->used_memory <= cache->max_memory);
assert (cache->live_entries <= cache->arrangement->size);
}
#else
#define _cache_sane_state(c)
#endif
static void
_entry_destroy (cairo_cache_t *cache, unsigned long i)
{
_cache_sane_state (cache);
if (LIVE_ENTRY_P(cache, i))
{
cairo_cache_entry_base_t *entry = cache->entries[i];
assert(cache->live_entries > 0);
assert(cache->used_memory >= entry->memory);
cache->live_entries--;
cache->used_memory -= entry->memory;
cache->backend->destroy_entry (cache, entry);
cache->entries[i] = DEAD_ENTRY;
}
}
static cairo_cache_entry_base_t **
_cache_lookup (cairo_cache_t *cache,
void *key,
int (*predicate)(void*,void*,void*))
{
cairo_cache_entry_base_t **probe;
unsigned long hash;
unsigned long table_size, i, idx, step;
_cache_sane_state (cache);
assert (key != NULL);
table_size = cache->arrangement->size;
hash = cache->backend->hash (cache, key);
idx = hash % table_size;
step = 0;
for (i = 0; i < table_size; ++i)
{
#ifdef CAIRO_MEASURE_CACHE_PERFORMANCE
cache->probes++;
#endif
assert(idx < table_size);
probe = cache->entries + idx;
/*
* There are two lookup modes: searching for a free slot and searching
* for an exact entry.
*/
if (predicate != NULL)
{
/* We are looking up an exact entry. */
if (*probe == NULL)
/* Found an empty spot, there can't be a match */
break;
else if (*probe != DEAD_ENTRY
&& (*probe)->hashcode == hash
&& predicate (cache, key, *probe))
return probe;
}
else
{
/* We are just looking for a free slot. */
if (*probe == NULL
|| *probe == DEAD_ENTRY)
return probe;
}
if (step == 0) {
step = hash % cache->arrangement->rehash;
if (step == 0)
step = 1;
}
idx += step;
if (idx >= table_size)
idx -= table_size;
}
/*
* The table should not have permitted you to get here if you were just
* looking for a free slot: there should have been room.
*/
assert(predicate != NULL);
return NULL;
}
static cairo_cache_entry_base_t **
_find_available_entry_for (cairo_cache_t *cache,
void *key)
{
return _cache_lookup (cache, key, NULL);
}
static cairo_cache_entry_base_t **
_find_exact_live_entry_for (cairo_cache_t *cache,
void *key)
{
return _cache_lookup (cache, key, cache->backend->keys_equal);
}
static const cairo_cache_arrangement_t *
_find_cache_arrangement (unsigned long proposed_size)
{
unsigned long idx;
for (idx = 0; idx < N_CACHE_SIZES; ++idx)
if (cache_arrangements[idx].high_water_mark >= proposed_size)
return &cache_arrangements[idx];
return NULL;
}
static cairo_status_t
_resize_cache (cairo_cache_t *cache, unsigned long proposed_size)
{
cairo_cache_t tmp;
cairo_cache_entry_base_t **e;
unsigned long new_size, i;
tmp = *cache;
tmp.arrangement = _find_cache_arrangement (proposed_size);
assert(tmp.arrangement != NULL);
if (tmp.arrangement == cache->arrangement)
return CAIRO_STATUS_SUCCESS;
new_size = tmp.arrangement->size;
tmp.entries = calloc (new_size, sizeof (cairo_cache_entry_base_t *));
if (tmp.entries == NULL)
return CAIRO_STATUS_NO_MEMORY;
for (i = 0; i < cache->arrangement->size; ++i) {
if (LIVE_ENTRY_P(cache, i)) {
e = _find_available_entry_for (&tmp, cache->entries[i]);
assert (e != NULL);
*e = cache->entries[i];
}
}
free (cache->entries);
cache->entries = tmp.entries;
cache->arrangement = tmp.arrangement;
return CAIRO_STATUS_SUCCESS;
}
#ifdef CAIRO_MEASURE_CACHE_PERFORMANCE
static double
_load_factor (cairo_cache_t *cache)
{
return ((double) cache->live_entries)
/ ((double) cache->arrangement->size);
}
#endif
static unsigned long
_random_live_entry (cairo_cache_t *cache)
{
unsigned long idx;
assert(cache != NULL);
do {
idx = rand () % cache->arrangement->size;
} while (! LIVE_ENTRY_P(cache, idx));
return idx;
}
/* public API follows */
cairo_status_t
_cairo_cache_init (cairo_cache_t *cache,
const cairo_cache_backend_t *backend,
unsigned long max_memory)
{
assert (backend != NULL);
if (cache != NULL){
cache->arrangement = &cache_arrangements[0];
cache->refcount = 1;
cache->max_memory = max_memory;
cache->used_memory = 0;
cache->live_entries = 0;
#ifdef CAIRO_MEASURE_CACHE_PERFORMANCE
cache->hits = 0;
cache->misses = 0;
cache->probes = 0;
#endif
cache->backend = backend;
cache->entries = calloc (sizeof(cairo_cache_entry_base_t *),
cache->arrangement->size);
if (cache->entries == NULL)
return CAIRO_STATUS_NO_MEMORY;
}
_cache_sane_state (cache);
return CAIRO_STATUS_SUCCESS;
}
void
_cairo_cache_reference (cairo_cache_t *cache)
{
_cache_sane_state (cache);
cache->refcount++;
}
void
_cairo_cache_destroy (cairo_cache_t *cache)
{
unsigned long i;
if (cache != NULL) {
_cache_sane_state (cache);
if (--cache->refcount > 0)
return;
for (i = 0; i < cache->arrangement->size; ++i) {
_entry_destroy (cache, i);
}
free (cache->entries);
cache->entries = NULL;
cache->backend->destroy_cache (cache);
}
}
cairo_status_t
_cairo_cache_lookup (cairo_cache_t *cache,
void *key,
void **entry_return)
{
unsigned long idx;
cairo_status_t status = CAIRO_STATUS_SUCCESS;
cairo_cache_entry_base_t **slot = NULL, *new_entry;
_cache_sane_state (cache);
#ifdef CAIRO_MEASURE_CACHE_PERFORMANCE
if ((cache->hits + cache->misses) % 0xffff == 0)
printf("cache %p stats: size %ld, live %ld, load %.2f\n"
" mem %ld/%ld, hit %ld, miss %ld\n"
" probe %ld, %.2f probe/access\n",
cache,
cache->arrangement->size,
cache->live_entries,
_load_factor (cache),
cache->used_memory,
cache->max_memory,
cache->hits,
cache->misses,
cache->probes,
((double) cache->probes)
/ ((double) (cache->hits +
cache->misses + 1)));
#endif
/* See if we have an entry in the table already. */
slot = _find_exact_live_entry_for (cache, key);
if (slot != NULL) {
#ifdef CAIRO_MEASURE_CACHE_PERFORMANCE
cache->hits++;
#endif
*entry_return = *slot;
return status;
}
#ifdef CAIRO_MEASURE_CACHE_PERFORMANCE
cache->misses++;
#endif
/* Build the new entry. */
status = cache->backend->create_entry (cache, key,
entry_return);
if (status != CAIRO_STATUS_SUCCESS)
return status;
new_entry = (cairo_cache_entry_base_t *) (*entry_return);
/* Store the hash value in case the backend forgot. */
new_entry->hashcode = cache->backend->hash (cache, key);
/* Make some entries die if we're under memory pressure. */
while (cache->live_entries > 0 &&
((cache->max_memory - cache->used_memory) < new_entry->memory)) {
idx = _random_live_entry (cache);
assert (idx < cache->arrangement->size);
_entry_destroy (cache, idx);
}
assert(cache->max_memory >= (cache->used_memory + new_entry->memory));
/* Make room in the table for a new slot. */
status = _resize_cache (cache, cache->live_entries + 1);
if (status != CAIRO_STATUS_SUCCESS) {
cache->backend->destroy_entry (cache, new_entry);
*entry_return = NULL;
return status;
}
slot = _find_available_entry_for (cache, key);
assert(slot != NULL);
/* Store entry in slot and increment statistics. */
*slot = new_entry;
cache->live_entries++;
cache->used_memory += new_entry->memory;
_cache_sane_state (cache);
return status;
}
unsigned long
_cairo_hash_string (const char *c)
{
/* This is the djb2 hash. */
unsigned long hash = 5381;
while (*c)
hash = ((hash << 5) + hash) + *c++;
return hash;
}