cairo/src/cairo-path-stroke.c
Chris Wilson af9fbd176b Introduce a new compositor architecture
Having spent the last dev cycle looking at how we could specialize the
compositors for various backends, we once again look for the
commonalities in order to reduce the duplication. In part this is
motivated by the idea that spans is a good interface for both the
existent GL backend and pixman, and so they deserve a dedicated
compositor. xcb/xlib target an identical rendering system and so they
should be using the same compositor, and it should be possible to run
that same compositor locally against pixman to generate reference tests.

Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>

P.S. This brings massive upheaval (read breakage) I've tried delaying in
order to fix as many things as possible but now this one patch does far,
far, far too much. Apologies in advance for breaking your favourite
backend, but trust me in that the end result will be much better. :)
2011-09-12 08:29:48 +01:00

1354 lines
36 KiB
C

/* -*- Mode: c; tab-width: 8; c-basic-offset: 4; indent-tabs-mode: t; -*- */
/* cairo - a vector graphics library with display and print output
*
* Copyright © 2002 University of Southern California
*
* This library is free software; you can redistribute it and/or
* modify it either under the terms of the GNU Lesser General Public
* License version 2.1 as published by the Free Software Foundation
* (the "LGPL") or, at your option, under the terms of the Mozilla
* Public License Version 1.1 (the "MPL"). If you do not alter this
* notice, a recipient may use your version of this file under either
* the MPL or the LGPL.
*
* You should have received a copy of the LGPL along with this library
* in the file COPYING-LGPL-2.1; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Suite 500, Boston, MA 02110-1335, USA
* You should have received a copy of the MPL along with this library
* in the file COPYING-MPL-1.1
*
* The contents of this file are subject to the Mozilla Public License
* Version 1.1 (the "License"); you may not use this file except in
* compliance with the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
* OF ANY KIND, either express or implied. See the LGPL or the MPL for
* the specific language governing rights and limitations.
*
* The Original Code is the cairo graphics library.
*
* The Initial Developer of the Original Code is University of Southern
* California.
*
* Contributor(s):
* Carl D. Worth <cworth@cworth.org>
* Chris Wilson <chris@chris-wilson.co.uk>
*/
#define _BSD_SOURCE /* for hypot() */
#include "cairoint.h"
#include "cairo-box-private.h"
#include "cairo-boxes-private.h"
#include "cairo-error-private.h"
#include "cairo-path-fixed-private.h"
#include "cairo-slope-private.h"
#include "cairo-stroke-dash-private.h"
#include "cairo-traps-private.h"
typedef struct cairo_stroker {
cairo_stroke_style_t style;
const cairo_matrix_t *ctm;
const cairo_matrix_t *ctm_inverse;
double tolerance;
double ctm_determinant;
cairo_bool_t ctm_det_positive;
void *closure;
cairo_status_t (*add_external_edge) (void *closure,
const cairo_point_t *p1,
const cairo_point_t *p2);
cairo_status_t (*add_triangle) (void *closure,
const cairo_point_t triangle[3]);
cairo_status_t (*add_triangle_fan) (void *closure,
const cairo_point_t *midpt,
const cairo_point_t *points,
int npoints);
cairo_status_t (*add_convex_quad) (void *closure,
const cairo_point_t quad[4]);
cairo_pen_t pen;
cairo_point_t current_point;
cairo_point_t first_point;
cairo_bool_t has_initial_sub_path;
cairo_bool_t has_current_face;
cairo_stroke_face_t current_face;
cairo_bool_t has_first_face;
cairo_stroke_face_t first_face;
cairo_stroker_dash_t dash;
cairo_bool_t has_bounds;
cairo_box_t bounds;
} cairo_stroker_t;
static cairo_status_t
_cairo_stroker_init (cairo_stroker_t *stroker,
const cairo_stroke_style_t *stroke_style,
const cairo_matrix_t *ctm,
const cairo_matrix_t *ctm_inverse,
double tolerance)
{
cairo_status_t status;
stroker->style = *stroke_style;
stroker->ctm = ctm;
stroker->ctm_inverse = ctm_inverse;
stroker->tolerance = tolerance;
stroker->ctm_determinant = _cairo_matrix_compute_determinant (stroker->ctm);
stroker->ctm_det_positive = stroker->ctm_determinant >= 0.0;
status = _cairo_pen_init (&stroker->pen,
stroke_style->line_width / 2.0,
tolerance, ctm);
if (unlikely (status))
return status;
stroker->has_bounds = FALSE;
stroker->has_current_face = FALSE;
stroker->has_first_face = FALSE;
stroker->has_initial_sub_path = FALSE;
_cairo_stroker_dash_init (&stroker->dash, stroke_style);
stroker->add_external_edge = NULL;
return CAIRO_STATUS_SUCCESS;
}
static void
_cairo_stroker_limit (cairo_stroker_t *stroker,
const cairo_path_fixed_t *path,
const cairo_box_t *boxes,
int num_boxes)
{
double dx, dy;
cairo_fixed_t fdx, fdy;
stroker->has_bounds = TRUE;
_cairo_boxes_get_extents (boxes, num_boxes, &stroker->bounds);
/* Extend the bounds in each direction to account for the maximum area
* we might generate trapezoids, to capture line segments that are outside
* of the bounds but which might generate rendering that's within bounds.
*/
_cairo_stroke_style_max_distance_from_path (&stroker->style, path,
stroker->ctm, &dx, &dy);
fdx = _cairo_fixed_from_double (dx);
fdy = _cairo_fixed_from_double (dy);
stroker->bounds.p1.x -= fdx;
stroker->bounds.p2.x += fdx;
stroker->bounds.p1.y -= fdy;
stroker->bounds.p2.y += fdy;
}
static void
_cairo_stroker_fini (cairo_stroker_t *stroker)
{
_cairo_pen_fini (&stroker->pen);
}
static void
_translate_point (cairo_point_t *point, const cairo_point_t *offset)
{
point->x += offset->x;
point->y += offset->y;
}
static int
_cairo_stroker_join_is_clockwise (const cairo_stroke_face_t *in,
const cairo_stroke_face_t *out)
{
cairo_slope_t in_slope, out_slope;
_cairo_slope_init (&in_slope, &in->point, &in->cw);
_cairo_slope_init (&out_slope, &out->point, &out->cw);
return _cairo_slope_compare (&in_slope, &out_slope) < 0;
}
/**
* _cairo_slope_compare_sgn
*
* Return -1, 0 or 1 depending on the relative slopes of
* two lines.
*/
static int
_cairo_slope_compare_sgn (double dx1, double dy1, double dx2, double dy2)
{
double c = (dx1 * dy2 - dx2 * dy1);
if (c > 0) return 1;
if (c < 0) return -1;
return 0;
}
static inline int
_range_step (int i, int step, int max)
{
i += step;
if (i < 0)
i = max - 1;
if (i >= max)
i = 0;
return i;
}
/*
* Construct a fan around the midpoint using the vertices from pen between
* inpt and outpt.
*/
static cairo_status_t
_tessellate_fan (cairo_stroker_t *stroker,
const cairo_slope_t *in_vector,
const cairo_slope_t *out_vector,
const cairo_point_t *midpt,
const cairo_point_t *inpt,
const cairo_point_t *outpt,
cairo_bool_t clockwise)
{
cairo_point_t stack_points[64], *points = stack_points;
int start, stop, step, i, npoints;
cairo_status_t status;
if (clockwise) {
step = -1;
start = _cairo_pen_find_active_ccw_vertex_index (&stroker->pen,
in_vector);
if (_cairo_slope_compare (&stroker->pen.vertices[start].slope_ccw,
in_vector) < 0)
start = _range_step (start, -1, stroker->pen.num_vertices);
stop = _cairo_pen_find_active_ccw_vertex_index (&stroker->pen,
out_vector);
if (_cairo_slope_compare (&stroker->pen.vertices[stop].slope_cw,
out_vector) > 0)
{
stop = _range_step (stop, 1, stroker->pen.num_vertices);
if (_cairo_slope_compare (&stroker->pen.vertices[stop].slope_ccw,
in_vector) < 0)
{
goto BEVEL;
}
}
npoints = start - stop;
} else {
step = 1;
start = _cairo_pen_find_active_cw_vertex_index (&stroker->pen,
in_vector);
if (_cairo_slope_compare (&stroker->pen.vertices[start].slope_cw,
in_vector) < 0)
start = _range_step (start, 1, stroker->pen.num_vertices);
stop = _cairo_pen_find_active_cw_vertex_index (&stroker->pen,
out_vector);
if (_cairo_slope_compare (&stroker->pen.vertices[stop].slope_ccw,
out_vector) > 0)
{
stop = _range_step (stop, -1, stroker->pen.num_vertices);
if (_cairo_slope_compare (&stroker->pen.vertices[stop].slope_cw,
in_vector) < 0)
{
goto BEVEL;
}
}
npoints = stop - start;
}
stop = _range_step (stop, step, stroker->pen.num_vertices);
if (npoints < 0)
npoints += stroker->pen.num_vertices;
npoints += 3;
if (npoints <= 1)
goto BEVEL;
if (npoints > ARRAY_LENGTH (stack_points)) {
points = _cairo_malloc_ab (npoints, sizeof (cairo_point_t));
if (unlikely (points == NULL))
return _cairo_error (CAIRO_STATUS_NO_MEMORY);
}
/* Construct the fan. */
npoints = 0;
points[npoints++] = *inpt;
for (i = start;
i != stop;
i = _range_step (i, step, stroker->pen.num_vertices))
{
points[npoints] = *midpt;
_translate_point (&points[npoints], &stroker->pen.vertices[i].point);
npoints++;
}
points[npoints++] = *outpt;
if (stroker->add_external_edge != NULL) {
for (i = 0; i < npoints - 1; i++) {
if (clockwise) {
status = stroker->add_external_edge (stroker->closure,
&points[i], &points[i+1]);
} else {
status = stroker->add_external_edge (stroker->closure,
&points[i+1], &points[i]);
}
if (unlikely (status))
break;
}
} else {
status = stroker->add_triangle_fan (stroker->closure,
midpt, points, npoints);
}
if (points != stack_points)
free (points);
return status;
BEVEL:
/* Ensure a leak free connection... */
if (stroker->add_external_edge != NULL) {
if (clockwise)
return stroker->add_external_edge (stroker->closure, inpt, outpt);
else
return stroker->add_external_edge (stroker->closure, outpt, inpt);
} else {
stack_points[0] = *midpt;
stack_points[1] = *inpt;
stack_points[2] = *outpt;
return stroker->add_triangle (stroker->closure, stack_points);
}
}
static cairo_status_t
_cairo_stroker_join (cairo_stroker_t *stroker,
const cairo_stroke_face_t *in,
const cairo_stroke_face_t *out)
{
int clockwise = _cairo_stroker_join_is_clockwise (out, in);
const cairo_point_t *inpt, *outpt;
cairo_point_t points[4];
cairo_status_t status;
if (in->cw.x == out->cw.x && in->cw.y == out->cw.y &&
in->ccw.x == out->ccw.x && in->ccw.y == out->ccw.y)
{
return CAIRO_STATUS_SUCCESS;
}
if (clockwise) {
if (stroker->add_external_edge != NULL) {
status = stroker->add_external_edge (stroker->closure,
&out->cw, &in->point);
if (unlikely (status))
return status;
status = stroker->add_external_edge (stroker->closure,
&in->point, &in->cw);
if (unlikely (status))
return status;
}
inpt = &in->ccw;
outpt = &out->ccw;
} else {
if (stroker->add_external_edge != NULL) {
status = stroker->add_external_edge (stroker->closure,
&in->ccw, &in->point);
if (unlikely (status))
return status;
status = stroker->add_external_edge (stroker->closure,
&in->point, &out->ccw);
if (unlikely (status))
return status;
}
inpt = &in->cw;
outpt = &out->cw;
}
switch (stroker->style.line_join) {
case CAIRO_LINE_JOIN_ROUND:
/* construct a fan around the common midpoint */
return _tessellate_fan (stroker,
&in->dev_vector,
&out->dev_vector,
&in->point, inpt, outpt,
clockwise);
case CAIRO_LINE_JOIN_MITER:
default: {
/* dot product of incoming slope vector with outgoing slope vector */
double in_dot_out = -in->usr_vector.x * out->usr_vector.x +
-in->usr_vector.y * out->usr_vector.y;
double ml = stroker->style.miter_limit;
/* Check the miter limit -- lines meeting at an acute angle
* can generate long miters, the limit converts them to bevel
*
* Consider the miter join formed when two line segments
* meet at an angle psi:
*
* /.\
* /. .\
* /./ \.\
* /./psi\.\
*
* We can zoom in on the right half of that to see:
*
* |\
* | \ psi/2
* | \
* | \
* | \
* | \
* miter \
* length \
* | \
* | .\
* | . \
* |. line \
* \ width \
* \ \
*
*
* The right triangle in that figure, (the line-width side is
* shown faintly with three '.' characters), gives us the
* following expression relating miter length, angle and line
* width:
*
* 1 /sin (psi/2) = miter_length / line_width
*
* The right-hand side of this relationship is the same ratio
* in which the miter limit (ml) is expressed. We want to know
* when the miter length is within the miter limit. That is
* when the following condition holds:
*
* 1/sin(psi/2) <= ml
* 1 <= ml sin(psi/2)
* 1 <= ml² sin²(psi/2)
* 2 <= ml² 2 sin²(psi/2)
* 2·sin²(psi/2) = 1-cos(psi)
* 2 <= ml² (1-cos(psi))
*
* in · out = |in| |out| cos (psi)
*
* in and out are both unit vectors, so:
*
* in · out = cos (psi)
*
* 2 <= ml² (1 - in · out)
*
*/
if (2 <= ml * ml * (1 - in_dot_out)) {
double x1, y1, x2, y2;
double mx, my;
double dx1, dx2, dy1, dy2;
double ix, iy;
double fdx1, fdy1, fdx2, fdy2;
double mdx, mdy;
/*
* we've got the points already transformed to device
* space, but need to do some computation with them and
* also need to transform the slope from user space to
* device space
*/
/* outer point of incoming line face */
x1 = _cairo_fixed_to_double (inpt->x);
y1 = _cairo_fixed_to_double (inpt->y);
dx1 = in->usr_vector.x;
dy1 = in->usr_vector.y;
cairo_matrix_transform_distance (stroker->ctm, &dx1, &dy1);
/* outer point of outgoing line face */
x2 = _cairo_fixed_to_double (outpt->x);
y2 = _cairo_fixed_to_double (outpt->y);
dx2 = out->usr_vector.x;
dy2 = out->usr_vector.y;
cairo_matrix_transform_distance (stroker->ctm, &dx2, &dy2);
/*
* Compute the location of the outer corner of the miter.
* That's pretty easy -- just the intersection of the two
* outer edges. We've got slopes and points on each
* of those edges. Compute my directly, then compute
* mx by using the edge with the larger dy; that avoids
* dividing by values close to zero.
*/
my = (((x2 - x1) * dy1 * dy2 - y2 * dx2 * dy1 + y1 * dx1 * dy2) /
(dx1 * dy2 - dx2 * dy1));
if (fabs (dy1) >= fabs (dy2))
mx = (my - y1) * dx1 / dy1 + x1;
else
mx = (my - y2) * dx2 / dy2 + x2;
/*
* When the two outer edges are nearly parallel, slight
* perturbations in the position of the outer points of the lines
* caused by representing them in fixed point form can cause the
* intersection point of the miter to move a large amount. If
* that moves the miter intersection from between the two faces,
* then draw a bevel instead.
*/
ix = _cairo_fixed_to_double (in->point.x);
iy = _cairo_fixed_to_double (in->point.y);
/* slope of one face */
fdx1 = x1 - ix; fdy1 = y1 - iy;
/* slope of the other face */
fdx2 = x2 - ix; fdy2 = y2 - iy;
/* slope from the intersection to the miter point */
mdx = mx - ix; mdy = my - iy;
/*
* Make sure the miter point line lies between the two
* faces by comparing the slopes
*/
if (_cairo_slope_compare_sgn (fdx1, fdy1, mdx, mdy) !=
_cairo_slope_compare_sgn (fdx2, fdy2, mdx, mdy))
{
if (stroker->add_external_edge != NULL) {
points[0].x = _cairo_fixed_from_double (mx);
points[0].y = _cairo_fixed_from_double (my);
if (clockwise) {
status = stroker->add_external_edge (stroker->closure,
inpt, &points[0]);
if (unlikely (status))
return status;
status = stroker->add_external_edge (stroker->closure,
&points[0], outpt);
if (unlikely (status))
return status;
} else {
status = stroker->add_external_edge (stroker->closure,
outpt, &points[0]);
if (unlikely (status))
return status;
status = stroker->add_external_edge (stroker->closure,
&points[0], inpt);
if (unlikely (status))
return status;
}
return CAIRO_STATUS_SUCCESS;
} else {
points[0] = in->point;
points[1] = *inpt;
points[2].x = _cairo_fixed_from_double (mx);
points[2].y = _cairo_fixed_from_double (my);
points[3] = *outpt;
return stroker->add_convex_quad (stroker->closure, points);
}
}
}
}
/* fall through ... */
case CAIRO_LINE_JOIN_BEVEL:
if (stroker->add_external_edge != NULL) {
if (clockwise) {
return stroker->add_external_edge (stroker->closure,
inpt, outpt);
} else {
return stroker->add_external_edge (stroker->closure,
outpt, inpt);
}
} else {
points[0] = in->point;
points[1] = *inpt;
points[2] = *outpt;
return stroker->add_triangle (stroker->closure, points);
}
}
}
static cairo_status_t
_cairo_stroker_add_cap (cairo_stroker_t *stroker,
const cairo_stroke_face_t *f)
{
switch (stroker->style.line_cap) {
case CAIRO_LINE_CAP_ROUND: {
cairo_slope_t slope;
slope.dx = -f->dev_vector.dx;
slope.dy = -f->dev_vector.dy;
return _tessellate_fan (stroker,
&f->dev_vector,
&slope,
&f->point, &f->cw, &f->ccw,
FALSE);
}
case CAIRO_LINE_CAP_SQUARE: {
double dx, dy;
cairo_slope_t fvector;
cairo_point_t quad[4];
dx = f->usr_vector.x;
dy = f->usr_vector.y;
dx *= stroker->style.line_width / 2.0;
dy *= stroker->style.line_width / 2.0;
cairo_matrix_transform_distance (stroker->ctm, &dx, &dy);
fvector.dx = _cairo_fixed_from_double (dx);
fvector.dy = _cairo_fixed_from_double (dy);
quad[0] = f->ccw;
quad[1].x = f->ccw.x + fvector.dx;
quad[1].y = f->ccw.y + fvector.dy;
quad[2].x = f->cw.x + fvector.dx;
quad[2].y = f->cw.y + fvector.dy;
quad[3] = f->cw;
if (stroker->add_external_edge != NULL) {
cairo_status_t status;
status = stroker->add_external_edge (stroker->closure,
&quad[0], &quad[1]);
if (unlikely (status))
return status;
status = stroker->add_external_edge (stroker->closure,
&quad[1], &quad[2]);
if (unlikely (status))
return status;
status = stroker->add_external_edge (stroker->closure,
&quad[2], &quad[3]);
if (unlikely (status))
return status;
return CAIRO_STATUS_SUCCESS;
} else {
return stroker->add_convex_quad (stroker->closure, quad);
}
}
case CAIRO_LINE_CAP_BUTT:
default:
if (stroker->add_external_edge != NULL) {
return stroker->add_external_edge (stroker->closure,
&f->ccw, &f->cw);
} else {
return CAIRO_STATUS_SUCCESS;
}
}
}
static cairo_status_t
_cairo_stroker_add_leading_cap (cairo_stroker_t *stroker,
const cairo_stroke_face_t *face)
{
cairo_stroke_face_t reversed;
cairo_point_t t;
reversed = *face;
/* The initial cap needs an outward facing vector. Reverse everything */
reversed.usr_vector.x = -reversed.usr_vector.x;
reversed.usr_vector.y = -reversed.usr_vector.y;
reversed.dev_vector.dx = -reversed.dev_vector.dx;
reversed.dev_vector.dy = -reversed.dev_vector.dy;
t = reversed.cw;
reversed.cw = reversed.ccw;
reversed.ccw = t;
return _cairo_stroker_add_cap (stroker, &reversed);
}
static cairo_status_t
_cairo_stroker_add_trailing_cap (cairo_stroker_t *stroker,
const cairo_stroke_face_t *face)
{
return _cairo_stroker_add_cap (stroker, face);
}
static inline cairo_bool_t
_compute_normalized_device_slope (double *dx, double *dy,
const cairo_matrix_t *ctm_inverse,
double *mag_out)
{
double dx0 = *dx, dy0 = *dy;
double mag;
cairo_matrix_transform_distance (ctm_inverse, &dx0, &dy0);
if (dx0 == 0.0 && dy0 == 0.0) {
if (mag_out)
*mag_out = 0.0;
return FALSE;
}
if (dx0 == 0.0) {
*dx = 0.0;
if (dy0 > 0.0) {
mag = dy0;
*dy = 1.0;
} else {
mag = -dy0;
*dy = -1.0;
}
} else if (dy0 == 0.0) {
*dy = 0.0;
if (dx0 > 0.0) {
mag = dx0;
*dx = 1.0;
} else {
mag = -dx0;
*dx = -1.0;
}
} else {
mag = hypot (dx0, dy0);
*dx = dx0 / mag;
*dy = dy0 / mag;
}
if (mag_out)
*mag_out = mag;
return TRUE;
}
static void
_compute_face (const cairo_point_t *point, cairo_slope_t *dev_slope,
double slope_dx, double slope_dy,
cairo_stroker_t *stroker, cairo_stroke_face_t *face)
{
double face_dx, face_dy;
cairo_point_t offset_ccw, offset_cw;
/*
* rotate to get a line_width/2 vector along the face, note that
* the vector must be rotated the right direction in device space,
* but by 90° in user space. So, the rotation depends on
* whether the ctm reflects or not, and that can be determined
* by looking at the determinant of the matrix.
*/
if (stroker->ctm_det_positive)
{
face_dx = - slope_dy * (stroker->style.line_width / 2.0);
face_dy = slope_dx * (stroker->style.line_width / 2.0);
}
else
{
face_dx = slope_dy * (stroker->style.line_width / 2.0);
face_dy = - slope_dx * (stroker->style.line_width / 2.0);
}
/* back to device space */
cairo_matrix_transform_distance (stroker->ctm, &face_dx, &face_dy);
offset_ccw.x = _cairo_fixed_from_double (face_dx);
offset_ccw.y = _cairo_fixed_from_double (face_dy);
offset_cw.x = -offset_ccw.x;
offset_cw.y = -offset_ccw.y;
face->ccw = *point;
_translate_point (&face->ccw, &offset_ccw);
face->point = *point;
face->cw = *point;
_translate_point (&face->cw, &offset_cw);
face->usr_vector.x = slope_dx;
face->usr_vector.y = slope_dy;
face->dev_vector = *dev_slope;
}
static cairo_status_t
_cairo_stroker_add_caps (cairo_stroker_t *stroker)
{
cairo_status_t status;
/* check for a degenerative sub_path */
if (stroker->has_initial_sub_path
&& ! stroker->has_first_face
&& ! stroker->has_current_face
&& stroker->style.line_cap == CAIRO_LINE_CAP_ROUND)
{
/* pick an arbitrary slope to use */
double dx = 1.0, dy = 0.0;
cairo_slope_t slope = { CAIRO_FIXED_ONE, 0 };
cairo_stroke_face_t face;
_compute_normalized_device_slope (&dx, &dy,
stroker->ctm_inverse, NULL);
/* arbitrarily choose first_point
* first_point and current_point should be the same */
_compute_face (&stroker->first_point, &slope, dx, dy, stroker, &face);
status = _cairo_stroker_add_leading_cap (stroker, &face);
if (unlikely (status))
return status;
status = _cairo_stroker_add_trailing_cap (stroker, &face);
if (unlikely (status))
return status;
}
if (stroker->has_first_face) {
status = _cairo_stroker_add_leading_cap (stroker,
&stroker->first_face);
if (unlikely (status))
return status;
}
if (stroker->has_current_face) {
status = _cairo_stroker_add_trailing_cap (stroker,
&stroker->current_face);
if (unlikely (status))
return status;
}
return CAIRO_STATUS_SUCCESS;
}
static cairo_status_t
_cairo_stroker_add_sub_edge (cairo_stroker_t *stroker,
const cairo_point_t *p1,
const cairo_point_t *p2,
cairo_slope_t *dev_slope,
double slope_dx, double slope_dy,
cairo_stroke_face_t *start,
cairo_stroke_face_t *end)
{
_compute_face (p1, dev_slope, slope_dx, slope_dy, stroker, start);
*end = *start;
if (p1->x == p2->x && p1->y == p2->y)
return CAIRO_STATUS_SUCCESS;
end->point = *p2;
end->ccw.x += p2->x - p1->x;
end->ccw.y += p2->y - p1->y;
end->cw.x += p2->x - p1->x;
end->cw.y += p2->y - p1->y;
if (stroker->add_external_edge != NULL) {
cairo_status_t status;
status = stroker->add_external_edge (stroker->closure,
&end->cw, &start->cw);
if (unlikely (status))
return status;
status = stroker->add_external_edge (stroker->closure,
&start->ccw, &end->ccw);
if (unlikely (status))
return status;
return CAIRO_STATUS_SUCCESS;
} else {
cairo_point_t quad[4];
quad[0] = start->cw;
quad[1] = end->cw;
quad[2] = end->ccw;
quad[3] = start->ccw;
return stroker->add_convex_quad (stroker->closure, quad);
}
}
static cairo_status_t
_cairo_stroker_move_to (void *closure,
const cairo_point_t *point)
{
cairo_stroker_t *stroker = closure;
cairo_status_t status;
/* reset the dash pattern for new sub paths */
_cairo_stroker_dash_start (&stroker->dash);
/* Cap the start and end of the previous sub path as needed */
status = _cairo_stroker_add_caps (stroker);
if (unlikely (status))
return status;
stroker->first_point = *point;
stroker->current_point = *point;
stroker->has_first_face = FALSE;
stroker->has_current_face = FALSE;
stroker->has_initial_sub_path = FALSE;
return CAIRO_STATUS_SUCCESS;
}
static cairo_status_t
_cairo_stroker_line_to (void *closure,
const cairo_point_t *point)
{
cairo_stroker_t *stroker = closure;
cairo_stroke_face_t start, end;
cairo_point_t *p1 = &stroker->current_point;
cairo_slope_t dev_slope;
double slope_dx, slope_dy;
cairo_status_t status;
stroker->has_initial_sub_path = TRUE;
if (p1->x == point->x && p1->y == point->y)
return CAIRO_STATUS_SUCCESS;
_cairo_slope_init (&dev_slope, p1, point);
slope_dx = _cairo_fixed_to_double (point->x - p1->x);
slope_dy = _cairo_fixed_to_double (point->y - p1->y);
_compute_normalized_device_slope (&slope_dx, &slope_dy,
stroker->ctm_inverse, NULL);
status = _cairo_stroker_add_sub_edge (stroker,
p1, point,
&dev_slope,
slope_dx, slope_dy,
&start, &end);
if (unlikely (status))
return status;
if (stroker->has_current_face) {
/* Join with final face from previous segment */
status = _cairo_stroker_join (stroker,
&stroker->current_face,
&start);
if (unlikely (status))
return status;
} else if (! stroker->has_first_face) {
/* Save sub path's first face in case needed for closing join */
stroker->first_face = start;
stroker->has_first_face = TRUE;
}
stroker->current_face = end;
stroker->has_current_face = TRUE;
stroker->current_point = *point;
return CAIRO_STATUS_SUCCESS;
}
/*
* Dashed lines. Cap each dash end, join around turns when on
*/
static cairo_status_t
_cairo_stroker_line_to_dashed (void *closure,
const cairo_point_t *p2)
{
cairo_stroker_t *stroker = closure;
double mag, remain, step_length = 0;
double slope_dx, slope_dy;
double dx2, dy2;
cairo_stroke_face_t sub_start, sub_end;
cairo_point_t *p1 = &stroker->current_point;
cairo_slope_t dev_slope;
cairo_line_t segment;
cairo_bool_t fully_in_bounds;
cairo_status_t status;
stroker->has_initial_sub_path = stroker->dash.dash_starts_on;
if (p1->x == p2->x && p1->y == p2->y)
return CAIRO_STATUS_SUCCESS;
fully_in_bounds = TRUE;
if (stroker->has_bounds &&
(! _cairo_box_contains_point (&stroker->bounds, p1) ||
! _cairo_box_contains_point (&stroker->bounds, p2)))
{
fully_in_bounds = FALSE;
}
_cairo_slope_init (&dev_slope, p1, p2);
slope_dx = _cairo_fixed_to_double (p2->x - p1->x);
slope_dy = _cairo_fixed_to_double (p2->y - p1->y);
if (! _compute_normalized_device_slope (&slope_dx, &slope_dy,
stroker->ctm_inverse, &mag))
{
return CAIRO_STATUS_SUCCESS;
}
remain = mag;
segment.p1 = *p1;
while (remain) {
step_length = MIN (stroker->dash.dash_remain, remain);
remain -= step_length;
dx2 = slope_dx * (mag - remain);
dy2 = slope_dy * (mag - remain);
cairo_matrix_transform_distance (stroker->ctm, &dx2, &dy2);
segment.p2.x = _cairo_fixed_from_double (dx2) + p1->x;
segment.p2.y = _cairo_fixed_from_double (dy2) + p1->y;
if (stroker->dash.dash_on &&
(fully_in_bounds ||
(! stroker->has_first_face && stroker->dash.dash_starts_on) ||
_cairo_box_intersects_line_segment (&stroker->bounds, &segment)))
{
status = _cairo_stroker_add_sub_edge (stroker,
&segment.p1, &segment.p2,
&dev_slope,
slope_dx, slope_dy,
&sub_start, &sub_end);
if (unlikely (status))
return status;
if (stroker->has_current_face)
{
/* Join with final face from previous segment */
status = _cairo_stroker_join (stroker,
&stroker->current_face,
&sub_start);
if (unlikely (status))
return status;
stroker->has_current_face = FALSE;
}
else if (! stroker->has_first_face &&
stroker->dash.dash_starts_on)
{
/* Save sub path's first face in case needed for closing join */
stroker->first_face = sub_start;
stroker->has_first_face = TRUE;
}
else
{
/* Cap dash start if not connecting to a previous segment */
status = _cairo_stroker_add_leading_cap (stroker, &sub_start);
if (unlikely (status))
return status;
}
if (remain) {
/* Cap dash end if not at end of segment */
status = _cairo_stroker_add_trailing_cap (stroker, &sub_end);
if (unlikely (status))
return status;
} else {
stroker->current_face = sub_end;
stroker->has_current_face = TRUE;
}
} else {
if (stroker->has_current_face) {
/* Cap final face from previous segment */
status = _cairo_stroker_add_trailing_cap (stroker,
&stroker->current_face);
if (unlikely (status))
return status;
stroker->has_current_face = FALSE;
}
}
_cairo_stroker_dash_step (&stroker->dash, step_length);
segment.p1 = segment.p2;
}
if (stroker->dash.dash_on && ! stroker->has_current_face) {
/* This segment ends on a transition to dash_on, compute a new face
* and add cap for the beginning of the next dash_on step.
*
* Note: this will create a degenerate cap if this is not the last line
* in the path. Whether this behaviour is desirable or not is debatable.
* On one side these degenerate caps can not be reproduced with regular
* path stroking.
* On the other hand, Acroread 7 also produces the degenerate caps.
*/
_compute_face (p2, &dev_slope,
slope_dx, slope_dy,
stroker,
&stroker->current_face);
status = _cairo_stroker_add_leading_cap (stroker,
&stroker->current_face);
if (unlikely (status))
return status;
stroker->has_current_face = TRUE;
}
stroker->current_point = *p2;
return CAIRO_STATUS_SUCCESS;
}
static cairo_status_t
_cairo_stroker_curve_to (void *closure,
const cairo_point_t *b,
const cairo_point_t *c,
const cairo_point_t *d)
{
cairo_stroker_t *stroker = closure;
cairo_spline_t spline;
cairo_line_join_t line_join_save;
cairo_stroke_face_t face;
double slope_dx, slope_dy;
cairo_path_fixed_line_to_func_t *line_to;
cairo_status_t status = CAIRO_STATUS_SUCCESS;
line_to = stroker->dash.dashed ?
_cairo_stroker_line_to_dashed :
_cairo_stroker_line_to;
if (! _cairo_spline_init (&spline,
(cairo_spline_add_point_func_t)line_to, stroker,
&stroker->current_point, b, c, d))
{
return line_to (closure, d);
}
/* If the line width is so small that the pen is reduced to a
single point, then we have nothing to do. */
if (stroker->pen.num_vertices <= 1)
return CAIRO_STATUS_SUCCESS;
/* Compute the initial face */
if (! stroker->dash.dashed || stroker->dash.dash_on) {
slope_dx = _cairo_fixed_to_double (spline.initial_slope.dx);
slope_dy = _cairo_fixed_to_double (spline.initial_slope.dy);
if (_compute_normalized_device_slope (&slope_dx, &slope_dy,
stroker->ctm_inverse, NULL))
{
_compute_face (&stroker->current_point,
&spline.initial_slope,
slope_dx, slope_dy,
stroker, &face);
}
if (stroker->has_current_face) {
status = _cairo_stroker_join (stroker,
&stroker->current_face, &face);
if (unlikely (status))
return status;
} else if (! stroker->has_first_face) {
stroker->first_face = face;
stroker->has_first_face = TRUE;
}
stroker->current_face = face;
stroker->has_current_face = TRUE;
}
/* Temporarily modify the stroker to use round joins to guarantee
* smooth stroked curves. */
line_join_save = stroker->style.line_join;
stroker->style.line_join = CAIRO_LINE_JOIN_ROUND;
status = _cairo_spline_decompose (&spline, stroker->tolerance);
if (unlikely (status))
return status;
/* And join the final face */
if (! stroker->dash.dashed || stroker->dash.dash_on) {
slope_dx = _cairo_fixed_to_double (spline.final_slope.dx);
slope_dy = _cairo_fixed_to_double (spline.final_slope.dy);
if (_compute_normalized_device_slope (&slope_dx, &slope_dy,
stroker->ctm_inverse, NULL))
{
_compute_face (&stroker->current_point,
&spline.final_slope,
slope_dx, slope_dy,
stroker, &face);
}
status = _cairo_stroker_join (stroker, &stroker->current_face, &face);
if (unlikely (status))
return status;
stroker->current_face = face;
}
stroker->style.line_join = line_join_save;
return CAIRO_STATUS_SUCCESS;
}
static cairo_status_t
_cairo_stroker_close_path (void *closure)
{
cairo_stroker_t *stroker = closure;
cairo_status_t status;
if (stroker->dash.dashed)
status = _cairo_stroker_line_to_dashed (stroker, &stroker->first_point);
else
status = _cairo_stroker_line_to (stroker, &stroker->first_point);
if (unlikely (status))
return status;
if (stroker->has_first_face && stroker->has_current_face) {
/* Join first and final faces of sub path */
status = _cairo_stroker_join (stroker,
&stroker->current_face,
&stroker->first_face);
if (unlikely (status))
return status;
} else {
/* Cap the start and end of the sub path as needed */
status = _cairo_stroker_add_caps (stroker);
if (unlikely (status))
return status;
}
stroker->has_initial_sub_path = FALSE;
stroker->has_first_face = FALSE;
stroker->has_current_face = FALSE;
return CAIRO_STATUS_SUCCESS;
}
cairo_status_t
_cairo_path_fixed_stroke_to_shaper (cairo_path_fixed_t *path,
const cairo_stroke_style_t *stroke_style,
const cairo_matrix_t *ctm,
const cairo_matrix_t *ctm_inverse,
double tolerance,
cairo_status_t (*add_triangle) (void *closure,
const cairo_point_t triangle[3]),
cairo_status_t (*add_triangle_fan) (void *closure,
const cairo_point_t *midpt,
const cairo_point_t *points,
int npoints),
cairo_status_t (*add_convex_quad) (void *closure,
const cairo_point_t quad[4]),
void *closure)
{
cairo_stroker_t stroker;
cairo_status_t status;
status = _cairo_stroker_init (&stroker, stroke_style,
ctm, ctm_inverse, tolerance);
if (unlikely (status))
return status;
stroker.add_triangle = add_triangle;
stroker.add_triangle_fan = add_triangle_fan;
stroker.add_convex_quad = add_convex_quad;
stroker.closure = closure;
status = _cairo_path_fixed_interpret (path,
_cairo_stroker_move_to,
stroker.dash.dashed ?
_cairo_stroker_line_to_dashed :
_cairo_stroker_line_to,
_cairo_stroker_curve_to,
_cairo_stroker_close_path,
&stroker);
if (unlikely (status))
goto BAIL;
/* Cap the start and end of the final sub path as needed */
status = _cairo_stroker_add_caps (&stroker);
BAIL:
_cairo_stroker_fini (&stroker);
return status;
}
cairo_status_t
_cairo_path_fixed_stroke_dashed_to_polygon (const cairo_path_fixed_t *path,
const cairo_stroke_style_t *stroke_style,
const cairo_matrix_t *ctm,
const cairo_matrix_t *ctm_inverse,
double tolerance,
cairo_polygon_t *polygon)
{
cairo_stroker_t stroker;
cairo_status_t status;
status = _cairo_stroker_init (&stroker, stroke_style,
ctm, ctm_inverse, tolerance);
if (unlikely (status))
return status;
stroker.add_external_edge = _cairo_polygon_add_external_edge,
stroker.closure = polygon;
if (polygon->num_limits)
_cairo_stroker_limit (&stroker, path,
polygon->limits, polygon->num_limits);
status = _cairo_path_fixed_interpret (path,
_cairo_stroker_move_to,
stroker.dash.dashed ?
_cairo_stroker_line_to_dashed :
_cairo_stroker_line_to,
_cairo_stroker_curve_to,
_cairo_stroker_close_path,
&stroker);
if (unlikely (status))
goto BAIL;
/* Cap the start and end of the final sub path as needed */
status = _cairo_stroker_add_caps (&stroker);
BAIL:
_cairo_stroker_fini (&stroker);
return status;
}
cairo_int_status_t
_cairo_path_fixed_stroke_to_traps (const cairo_path_fixed_t *path,
const cairo_stroke_style_t *stroke_style,
const cairo_matrix_t *ctm,
const cairo_matrix_t *ctm_inverse,
double tolerance,
cairo_traps_t *traps)
{
cairo_int_status_t status;
cairo_polygon_t polygon;
_cairo_polygon_init (&polygon, traps->limits, traps->num_limits);
status = _cairo_path_fixed_stroke_to_polygon (path,
stroke_style,
ctm,
ctm_inverse,
tolerance,
&polygon);
if (unlikely (status))
goto BAIL;
status = _cairo_polygon_status (&polygon);
if (unlikely (status))
goto BAIL;
status = _cairo_bentley_ottmann_tessellate_polygon (traps, &polygon,
CAIRO_FILL_RULE_WINDING);
BAIL:
_cairo_polygon_fini (&polygon);
return status;
}