cairo/src/cairo-bentley-ottmann-rectangular.c
Chris Wilson a6bcb6260e [bo-rectangular] Fix assertion failure with insertion sort
We remember the location of the last insert as the next edge is likely to
be nearby. However, we need to be careful when the pointer rests upon the
HEAD and ensure that we begin the search from the appropriate end.
2009-08-30 10:09:51 +01:00

737 lines
19 KiB
C

/*
* Copyright © 2004 Carl Worth
* Copyright © 2006 Red Hat, Inc.
* Copyright © 2009 Chris Wilson
*
* This library is free software; you can redistribute it and/or
* modify it either under the terms of the GNU Lesser General Public
* License version 2.1 as published by the Free Software Foundation
* (the "LGPL") or, at your option, under the terms of the Mozilla
* Public License Version 1.1 (the "MPL"). If you do not alter this
* notice, a recipient may use your version of this file under either
* the MPL or the LGPL.
*
* You should have received a copy of the LGPL along with this library
* in the file COPYING-LGPL-2.1; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
* You should have received a copy of the MPL along with this library
* in the file COPYING-MPL-1.1
*
* The contents of this file are subject to the Mozilla Public License
* Version 1.1 (the "License"); you may not use this file except in
* compliance with the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
* OF ANY KIND, either express or implied. See the LGPL or the MPL for
* the specific language governing rights and limitations.
*
* The Original Code is the cairo graphics library.
*
* The Initial Developer of the Original Code is Carl Worth
*
* Contributor(s):
* Carl D. Worth <cworth@cworth.org>
* Chris Wilson <chris@chris-wilson.co.uk>
*/
/* Provide definitions for standalone compilation */
#include "cairoint.h"
#include "cairo-combsort-private.h"
#include "cairo-list-private.h"
typedef struct _cairo_bo_rectangle cairo_bo_rectangle_t;
typedef struct _cairo_bo_edge cairo_bo_edge_t;
/* A deferred trapezoid of an edge */
typedef struct _cairo_bo_trap {
cairo_bo_edge_t *right;
int32_t top;
} cairo_bo_trap_t;
struct _cairo_bo_edge {
int x;
int dir;
cairo_bo_trap_t deferred_trap;
cairo_list_t link;
};
struct _cairo_bo_rectangle {
cairo_bo_edge_t left, right;
int top, bottom;
};
/* the parent is always given by index/2 */
#define PQ_PARENT_INDEX(i) ((i) >> 1)
#define PQ_FIRST_ENTRY 1
/* left and right children are index * 2 and (index * 2) +1 respectively */
#define PQ_LEFT_CHILD_INDEX(i) ((i) << 1)
typedef struct _pqueue {
int size, max_size;
cairo_bo_rectangle_t **elements;
cairo_bo_rectangle_t *elements_embedded[1024];
} pqueue_t;
typedef struct _cairo_bo_sweep_line {
cairo_bo_rectangle_t **rectangles;
pqueue_t stop;
cairo_list_t sweep;
cairo_list_t *current_left, *current_right;
int32_t current_y;
int32_t last_y;
} cairo_bo_sweep_line_t;
#define DEBUG_TRAPS 0
#if DEBUG_TRAPS
static void
dump_traps (cairo_traps_t *traps, const char *filename)
{
FILE *file;
int n;
if (getenv ("CAIRO_DEBUG_TRAPS") == NULL)
return;
file = fopen (filename, "a");
if (file != NULL) {
for (n = 0; n < traps->num_traps; n++) {
fprintf (file, "%d %d L:(%d, %d), (%d, %d) R:(%d, %d), (%d, %d)\n",
traps->traps[n].top,
traps->traps[n].bottom,
traps->traps[n].left.p1.x,
traps->traps[n].left.p1.y,
traps->traps[n].left.p2.x,
traps->traps[n].left.p2.y,
traps->traps[n].right.p1.x,
traps->traps[n].right.p1.y,
traps->traps[n].right.p2.x,
traps->traps[n].right.p2.y);
}
fprintf (file, "\n");
fclose (file);
}
}
#else
#define dump_traps(traps, filename)
#endif
static inline int
cairo_bo_rectangle_compare_start (const cairo_bo_rectangle_t *a,
const cairo_bo_rectangle_t *b)
{
return a->top - b->top;
}
static inline int
_cairo_bo_rectangle_compare_stop (const cairo_bo_rectangle_t *a,
const cairo_bo_rectangle_t *b)
{
return a->bottom - b->bottom;
}
static inline void
_pqueue_init (pqueue_t *pq)
{
pq->max_size = ARRAY_LENGTH (pq->elements_embedded);
pq->size = 0;
pq->elements = pq->elements_embedded;
pq->elements[PQ_FIRST_ENTRY] = NULL;
}
static inline void
_pqueue_fini (pqueue_t *pq)
{
if (pq->elements != pq->elements_embedded)
free (pq->elements);
}
static cairo_status_t
_pqueue_grow (pqueue_t *pq)
{
cairo_bo_rectangle_t **new_elements;
pq->max_size *= 2;
if (pq->elements == pq->elements_embedded) {
new_elements = _cairo_malloc_ab (pq->max_size,
sizeof (cairo_bo_rectangle_t *));
if (unlikely (new_elements == NULL))
return _cairo_error (CAIRO_STATUS_NO_MEMORY);
memcpy (new_elements, pq->elements_embedded,
sizeof (pq->elements_embedded));
} else {
new_elements = _cairo_realloc_ab (pq->elements,
pq->max_size,
sizeof (cairo_bo_rectangle_t *));
if (unlikely (new_elements == NULL))
return _cairo_error (CAIRO_STATUS_NO_MEMORY);
}
pq->elements = new_elements;
return CAIRO_STATUS_SUCCESS;
}
static inline cairo_status_t
_pqueue_push (pqueue_t *pq, cairo_bo_rectangle_t *rectangle)
{
cairo_bo_rectangle_t **elements;
int i, parent;
if (unlikely (pq->size + 1 == pq->max_size)) {
cairo_status_t status;
status = _pqueue_grow (pq);
if (unlikely (status))
return status;
}
elements = pq->elements;
for (i = ++pq->size;
i != PQ_FIRST_ENTRY &&
_cairo_bo_rectangle_compare_stop (rectangle,
elements[parent = PQ_PARENT_INDEX (i)]) < 0;
i = parent)
{
elements[i] = elements[parent];
}
elements[i] = rectangle;
return CAIRO_STATUS_SUCCESS;
}
static inline void
_pqueue_pop (pqueue_t *pq)
{
cairo_bo_rectangle_t **elements = pq->elements;
cairo_bo_rectangle_t *tail;
int child, i;
tail = elements[pq->size--];
if (pq->size == 0) {
elements[PQ_FIRST_ENTRY] = NULL;
return;
}
for (i = PQ_FIRST_ENTRY;
(child = PQ_LEFT_CHILD_INDEX (i)) <= pq->size;
i = child)
{
if (child != pq->size &&
_cairo_bo_rectangle_compare_stop (elements[child+1],
elements[child]) < 0)
{
child++;
}
if (_cairo_bo_rectangle_compare_stop (elements[child], tail) >= 0)
break;
elements[i] = elements[child];
}
elements[i] = tail;
}
static inline cairo_bo_rectangle_t *
_cairo_bo_rectangle_pop_start (cairo_bo_sweep_line_t *sweep_line)
{
return *sweep_line->rectangles++;
}
static inline cairo_bo_rectangle_t *
_cairo_bo_rectangle_peek_stop (cairo_bo_sweep_line_t *sweep_line)
{
return sweep_line->stop.elements[PQ_FIRST_ENTRY];
}
CAIRO_COMBSORT_DECLARE (_cairo_bo_rectangle_sort,
cairo_bo_rectangle_t *,
cairo_bo_rectangle_compare_start)
static void
_cairo_bo_sweep_line_init (cairo_bo_sweep_line_t *sweep_line,
cairo_bo_rectangle_t **rectangles,
int num_rectangles)
{
_cairo_bo_rectangle_sort (rectangles, num_rectangles);
rectangles[num_rectangles] = NULL;
sweep_line->rectangles = rectangles;
cairo_list_init (&sweep_line->sweep);
sweep_line->current_left = &sweep_line->sweep;
sweep_line->current_right = &sweep_line->sweep;
sweep_line->current_y = INT32_MIN;
sweep_line->last_y = INT32_MIN;
_pqueue_init (&sweep_line->stop);
}
static void
_cairo_bo_sweep_line_fini (cairo_bo_sweep_line_t *sweep_line)
{
_pqueue_fini (&sweep_line->stop);
}
static inline cairo_bo_edge_t *
link_to_edge (cairo_list_t *elt)
{
return cairo_container_of (elt, cairo_bo_edge_t, link);
}
static cairo_status_t
_cairo_bo_edge_end_trap (cairo_bo_edge_t *left,
int32_t bot,
cairo_traps_t *traps)
{
cairo_bo_trap_t *trap = &left->deferred_trap;
/* Only emit (trivial) non-degenerate trapezoids with positive height. */
if (likely (trap->top < bot)) {
cairo_line_t _left = {
{ left->x, trap->top },
{ left->x, bot },
}, _right = {
{ trap->right->x, trap->top },
{ trap->right->x, bot },
};
_cairo_traps_add_trap (traps, trap->top, bot, &_left, &_right);
}
trap->right = NULL;
return _cairo_traps_status (traps);
}
/* Start a new trapezoid at the given top y coordinate, whose edges
* are `edge' and `edge->next'. If `edge' already has a trapezoid,
* then either add it to the traps in `traps', if the trapezoid's
* right edge differs from `edge->next', or do nothing if the new
* trapezoid would be a continuation of the existing one. */
static inline cairo_status_t
_cairo_bo_edge_start_or_continue_trap (cairo_bo_edge_t *left,
cairo_bo_edge_t *right,
int top,
cairo_traps_t *traps)
{
cairo_status_t status;
if (left->deferred_trap.right == right)
return CAIRO_STATUS_SUCCESS;
if (left->deferred_trap.right != NULL) {
if (right != NULL && left->deferred_trap.right->x == right->x) {
/* continuation on right, so just swap edges */
left->deferred_trap.right = right;
return CAIRO_STATUS_SUCCESS;
}
status = _cairo_bo_edge_end_trap (left, top, traps);
if (unlikely (status))
return status;
}
if (right != NULL && left->x != right->x) {
left->deferred_trap.top = top;
left->deferred_trap.right = right;
}
return CAIRO_STATUS_SUCCESS;
}
static inline cairo_status_t
_active_edges_to_traps (cairo_bo_sweep_line_t *sweep,
cairo_fill_rule_t fill_rule,
cairo_traps_t *traps)
{
int top = sweep->current_y;
cairo_list_t *pos = &sweep->sweep;
cairo_status_t status;
if (sweep->last_y == sweep->current_y)
return CAIRO_STATUS_SUCCESS;
if (fill_rule == CAIRO_FILL_RULE_WINDING) {
do {
cairo_bo_edge_t *left, *right;
int in_out;
pos = pos->next;
if (pos == &sweep->sweep)
break;
left = link_to_edge (pos);
in_out = left->dir;
/* Check if there is a co-linear edge with an existing trap */
if (left->deferred_trap.right == NULL) {
right = link_to_edge (pos->next);
while (unlikely (right->x == left->x)) {
if (right->deferred_trap.right != NULL) {
/* continuation on left */
left->deferred_trap = right->deferred_trap;
right->deferred_trap.right = NULL;
break;
}
right = link_to_edge (right->link.next);
}
}
/* Greedily search for the closing edge, so that we generate the
* maximal span width with the minimal number of trapezoids.
*/
right = link_to_edge (left->link.next);
do {
/* End all subsumed traps */
if (right->deferred_trap.right != NULL) {
status = _cairo_bo_edge_end_trap (right, top, traps);
if (unlikely (status))
return status;
}
in_out += right->dir;
if (in_out == 0) {
/* skip co-linear edges */
if (likely (right->link.next == &sweep->sweep ||
right->x != link_to_edge (right->link.next)->x))
{
break;
}
}
right = link_to_edge (right->link.next);
} while (TRUE);
status = _cairo_bo_edge_start_or_continue_trap (left, right,
top, traps);
if (unlikely (status))
return status;
pos = &right->link;
} while (TRUE);
} else {
cairo_bo_edge_t *left, *right;
do {
int in_out = 0;
pos = pos->next;
if (pos == &sweep->sweep)
break;
left = link_to_edge (pos);
pos = pos->next;
do {
right = link_to_edge (pos);
if (right->deferred_trap.right != NULL) {
status = _cairo_bo_edge_end_trap (right, top, traps);
if (unlikely (status))
return status;
}
if ((in_out++ & 1) == 0) {
cairo_list_t *next;
cairo_bool_t skip = FALSE;
/* skip co-linear edges */
next = pos->next;
if (next != &sweep->sweep)
skip = right->x == link_to_edge (next)->x;
if (! skip)
break;
}
pos = pos->next;
} while (TRUE);
right = pos == &sweep->sweep ? NULL : link_to_edge (pos);
status = _cairo_bo_edge_start_or_continue_trap (left, right,
top, traps);
if (unlikely (status))
return status;
} while (right != NULL);
}
sweep->last_y = sweep->current_y;
return CAIRO_STATUS_SUCCESS;
}
static inline cairo_status_t
_cairo_bo_sweep_line_delete_edge (cairo_bo_sweep_line_t *sweep_line,
cairo_bo_edge_t *edge,
cairo_traps_t *traps)
{
if (edge->deferred_trap.right != NULL) {
cairo_bo_edge_t *next = link_to_edge (edge->link.next);
if (&next->link != &sweep_line->sweep && next->x == edge->x) {
next->deferred_trap = edge->deferred_trap;
} else {
cairo_status_t status;
status = _cairo_bo_edge_end_trap (edge,
sweep_line->current_y,
traps);
if (unlikely (status))
return status;
}
}
if (sweep_line->current_left == &edge->link)
sweep_line->current_left = edge->link.prev;
if (sweep_line->current_right == &edge->link)
sweep_line->current_right = edge->link.next;
cairo_list_del (&edge->link);
return CAIRO_STATUS_SUCCESS;
}
static inline cairo_status_t
_cairo_bo_sweep_line_delete (cairo_bo_sweep_line_t *sweep_line,
cairo_bo_rectangle_t *rectangle,
cairo_fill_rule_t fill_rule,
cairo_traps_t *traps)
{
cairo_status_t status;
if (rectangle->bottom != sweep_line->current_y) {
status = _active_edges_to_traps (sweep_line, fill_rule, traps);
if (unlikely (status))
return status;
sweep_line->current_y = rectangle->bottom;
}
status = _cairo_bo_sweep_line_delete_edge (sweep_line,
&rectangle->left,
traps);
if (unlikely (status))
return status;
status = _cairo_bo_sweep_line_delete_edge (sweep_line,
&rectangle->right,
traps);
if (unlikely (status))
return status;
_pqueue_pop (&sweep_line->stop);
return CAIRO_STATUS_SUCCESS;
}
static cairo_bool_t
validate_sweep_line (cairo_bo_sweep_line_t *sweep_line)
{
int32_t last_x = INT32_MIN;
cairo_bo_edge_t *edge;
cairo_list_foreach_entry (edge, cairo_bo_edge_t, &sweep_line->sweep, link) {
if (edge->x < last_x)
return FALSE;
last_x = edge->x;
}
return TRUE;
}
static inline cairo_status_t
_cairo_bo_sweep_line_insert (cairo_bo_sweep_line_t *sweep_line,
cairo_bo_rectangle_t *rectangle,
cairo_fill_rule_t fill_rule,
cairo_traps_t *traps)
{
cairo_list_t *pos;
cairo_status_t status;
if (rectangle->top != sweep_line->current_y) {
cairo_bo_rectangle_t *stop;
stop = _cairo_bo_rectangle_peek_stop (sweep_line);
while (stop != NULL && stop->bottom < rectangle->top) {
status = _cairo_bo_sweep_line_delete (sweep_line, stop,
fill_rule, traps);
if (unlikely (status))
return status;
stop = _cairo_bo_rectangle_peek_stop (sweep_line);
}
status = _active_edges_to_traps (sweep_line, fill_rule, traps);
if (unlikely (status))
return status;
sweep_line->current_y = rectangle->top;
}
/* right edge */
pos = sweep_line->current_right;
if (pos == &sweep_line->sweep)
pos = sweep_line->sweep.prev;
if (pos != &sweep_line->sweep) {
int cmp;
cmp = link_to_edge (pos)->x - rectangle->right.x;
if (cmp < 0) {
while (pos->next != &sweep_line->sweep &&
link_to_edge (pos->next)->x - rectangle->right.x < 0)
{
pos = pos->next;
}
} else if (cmp > 0) {
do {
pos = pos->prev;
} while (pos != &sweep_line->sweep &&
link_to_edge (pos)->x - rectangle->right.x > 0);
}
cairo_list_add (&rectangle->right.link, pos);
} else {
cairo_list_add_tail (&rectangle->right.link, pos);
}
sweep_line->current_right = &rectangle->right.link;
assert (validate_sweep_line (sweep_line));
/* left edge */
pos = sweep_line->current_left;
if (pos == &sweep_line->sweep)
pos = sweep_line->sweep.next;
if (pos != &sweep_line->sweep) {
int cmp;
if (link_to_edge (pos)->x >= rectangle->right.x) {
pos = rectangle->right.link.prev;
if (pos == &sweep_line->sweep)
goto left_done;
}
cmp = link_to_edge (pos)->x - rectangle->left.x;
if (cmp < 0) {
while (pos->next != &sweep_line->sweep &&
link_to_edge (pos->next)->x - rectangle->left.x < 0)
{
pos = pos->next;
}
} else if (cmp > 0) {
do {
pos = pos->prev;
} while (pos != &sweep_line->sweep &&
link_to_edge (pos)->x - rectangle->left.x > 0);
}
}
left_done:
cairo_list_add (&rectangle->left.link, pos);
sweep_line->current_left = &rectangle->left.link;
assert (validate_sweep_line (sweep_line));
return _pqueue_push (&sweep_line->stop, rectangle);
}
static cairo_status_t
_cairo_bentley_ottmann_tessellate_rectangular (cairo_bo_rectangle_t **rectangles,
int num_rectangles,
cairo_fill_rule_t fill_rule,
cairo_traps_t *traps)
{
cairo_bo_sweep_line_t sweep_line;
cairo_bo_rectangle_t *rectangle;
cairo_status_t status = CAIRO_STATUS_SUCCESS;
_cairo_bo_sweep_line_init (&sweep_line, rectangles, num_rectangles);
while ((rectangle = _cairo_bo_rectangle_pop_start (&sweep_line)) != NULL) {
status = _cairo_bo_sweep_line_insert (&sweep_line, rectangle,
fill_rule, traps);
if (unlikely (status))
goto BAIL;
}
while ((rectangle = _cairo_bo_rectangle_peek_stop (&sweep_line)) != NULL) {
status = _cairo_bo_sweep_line_delete (&sweep_line, rectangle,
fill_rule, traps);
if (unlikely (status))
goto BAIL;
}
BAIL:
_cairo_bo_sweep_line_fini (&sweep_line);
return status;
}
cairo_status_t
_cairo_bentley_ottmann_tessellate_rectangular_traps (cairo_traps_t *traps,
cairo_fill_rule_t fill_rule)
{
cairo_bo_rectangle_t stack_rectangles[CAIRO_STACK_ARRAY_LENGTH (cairo_bo_rectangle_t)];
cairo_bo_rectangle_t *rectangles;
cairo_bo_rectangle_t *stack_rectangles_ptrs[ARRAY_LENGTH (stack_rectangles) + 1];
cairo_bo_rectangle_t **rectangles_ptrs;
cairo_status_t status;
int i;
if (unlikely (traps->num_traps == 0))
return CAIRO_STATUS_SUCCESS;
assert (traps->is_rectangular);
dump_traps (traps, "bo-rects-traps-in.txt");
rectangles = stack_rectangles;
rectangles_ptrs = stack_rectangles_ptrs;
if (traps->num_traps > ARRAY_LENGTH (stack_rectangles)) {
rectangles = _cairo_malloc_ab_plus_c (traps->num_traps,
sizeof (cairo_bo_rectangle_t) +
sizeof (cairo_bo_rectangle_t *),
sizeof (cairo_bo_rectangle_t *));
if (unlikely (rectangles == NULL))
return _cairo_error (CAIRO_STATUS_NO_MEMORY);
rectangles_ptrs = (cairo_bo_rectangle_t **) (rectangles + traps->num_traps);
}
for (i = 0; i < traps->num_traps; i++) {
if (traps->traps[i].left.p1.x < traps->traps[i].right.p1.x) {
rectangles[i].left.x = traps->traps[i].left.p1.x;
rectangles[i].left.dir = 1;
rectangles[i].right.x = traps->traps[i].right.p1.x;
rectangles[i].right.dir = -1;
} else {
rectangles[i].right.x = traps->traps[i].left.p1.x;
rectangles[i].right.dir = 1;
rectangles[i].left.x = traps->traps[i].right.p1.x;
rectangles[i].left.dir = -1;
}
rectangles[i].left.deferred_trap.right = NULL;
cairo_list_init (&rectangles[i].left.link);
rectangles[i].right.deferred_trap.right = NULL;
cairo_list_init (&rectangles[i].right.link);
rectangles[i].top = traps->traps[i].top;
rectangles[i].bottom = traps->traps[i].bottom;
rectangles_ptrs[i] = &rectangles[i];
}
_cairo_traps_clear (traps);
status = _cairo_bentley_ottmann_tessellate_rectangular (rectangles_ptrs, i,
fill_rule,
traps);
traps->is_rectilinear = TRUE;
traps->is_rectangular = TRUE;
if (rectangles != stack_rectangles)
free (rectangles);
dump_traps (traps, "bo-rects-traps-out.txt");
return status;
}