cairo/src/cairo-path-fill.c

285 lines
7.9 KiB
C

/* cairo - a vector graphics library with display and print output
*
* Copyright © 2002 University of Southern California
*
* This library is free software; you can redistribute it and/or
* modify it either under the terms of the GNU Lesser General Public
* License version 2.1 as published by the Free Software Foundation
* (the "LGPL") or, at your option, under the terms of the Mozilla
* Public License Version 1.1 (the "MPL"). If you do not alter this
* notice, a recipient may use your version of this file under either
* the MPL or the LGPL.
*
* You should have received a copy of the LGPL along with this library
* in the file COPYING-LGPL-2.1; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
* You should have received a copy of the MPL along with this library
* in the file COPYING-MPL-1.1
*
* The contents of this file are subject to the Mozilla Public License
* Version 1.1 (the "License"); you may not use this file except in
* compliance with the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
* OF ANY KIND, either express or implied. See the LGPL or the MPL for
* the specific language governing rights and limitations.
*
* The Original Code is the cairo graphics library.
*
* The Initial Developer of the Original Code is University of Southern
* California.
*
* Contributor(s):
* Carl D. Worth <cworth@cworth.org>
*/
#include "cairoint.h"
#include "cairo-path-fixed-private.h"
typedef struct cairo_filler {
double tolerance;
cairo_traps_t *traps;
cairo_point_t current_point;
cairo_polygon_t polygon;
} cairo_filler_t;
static void
_cairo_filler_init (cairo_filler_t *filler, double tolerance, cairo_traps_t *traps);
static void
_cairo_filler_fini (cairo_filler_t *filler);
static cairo_status_t
_cairo_filler_move_to (void *closure, cairo_point_t *point);
static cairo_status_t
_cairo_filler_line_to (void *closure, cairo_point_t *point);
static cairo_status_t
_cairo_filler_curve_to (void *closure,
cairo_point_t *b,
cairo_point_t *c,
cairo_point_t *d);
static cairo_status_t
_cairo_filler_close_path (void *closure);
static void
_cairo_filler_init (cairo_filler_t *filler, double tolerance, cairo_traps_t *traps)
{
filler->tolerance = tolerance;
filler->traps = traps;
filler->current_point.x = 0;
filler->current_point.y = 0;
_cairo_polygon_init (&filler->polygon);
}
static void
_cairo_filler_fini (cairo_filler_t *filler)
{
_cairo_polygon_fini (&filler->polygon);
}
static cairo_status_t
_cairo_filler_move_to (void *closure, cairo_point_t *point)
{
cairo_filler_t *filler = closure;
cairo_polygon_t *polygon = &filler->polygon;
_cairo_polygon_close (polygon);
_cairo_polygon_move_to (polygon, point);
filler->current_point = *point;
return _cairo_polygon_status (&filler->polygon);
}
static cairo_status_t
_cairo_filler_line_to (void *closure, cairo_point_t *point)
{
cairo_filler_t *filler = closure;
cairo_polygon_t *polygon = &filler->polygon;
_cairo_polygon_line_to (polygon, point);
filler->current_point = *point;
return _cairo_polygon_status (&filler->polygon);
}
static cairo_status_t
_cairo_filler_curve_to (void *closure,
cairo_point_t *b,
cairo_point_t *c,
cairo_point_t *d)
{
int i;
cairo_status_t status = CAIRO_STATUS_SUCCESS;
cairo_filler_t *filler = closure;
cairo_polygon_t *polygon = &filler->polygon;
cairo_spline_t spline;
status = _cairo_spline_init (&spline, &filler->current_point, b, c, d);
if (status == CAIRO_INT_STATUS_DEGENERATE)
return CAIRO_STATUS_SUCCESS;
status = _cairo_spline_decompose (&spline, filler->tolerance);
if (status)
goto CLEANUP_SPLINE;
for (i = 1; i < spline.num_points; i++)
_cairo_polygon_line_to (polygon, &spline.points[i]);
CLEANUP_SPLINE:
_cairo_spline_fini (&spline);
filler->current_point = *d;
return status;
}
static cairo_status_t
_cairo_filler_close_path (void *closure)
{
cairo_filler_t *filler = closure;
cairo_polygon_t *polygon = &filler->polygon;
_cairo_polygon_close (polygon);
return _cairo_polygon_status (polygon);
}
static cairo_int_status_t
_cairo_path_fixed_fill_rectangle (cairo_path_fixed_t *path,
cairo_traps_t *traps);
cairo_status_t
_cairo_path_fixed_fill_to_traps (cairo_path_fixed_t *path,
cairo_fill_rule_t fill_rule,
double tolerance,
cairo_traps_t *traps)
{
cairo_status_t status = CAIRO_STATUS_SUCCESS;
cairo_filler_t filler;
/* Before we do anything else, we use a special-case filler for
* a device-axis aligned rectangle if possible. */
status = _cairo_path_fixed_fill_rectangle (path, traps);
if (status != CAIRO_INT_STATUS_UNSUPPORTED)
return status;
_cairo_filler_init (&filler, tolerance, traps);
status = _cairo_path_fixed_interpret (path,
CAIRO_DIRECTION_FORWARD,
_cairo_filler_move_to,
_cairo_filler_line_to,
_cairo_filler_curve_to,
_cairo_filler_close_path,
&filler);
if (status)
goto BAIL;
_cairo_polygon_close (&filler.polygon);
status = _cairo_polygon_status (&filler.polygon);
if (status)
goto BAIL;
status = _cairo_bentley_ottmann_tessellate_polygon (filler.traps,
&filler.polygon,
fill_rule);
if (status)
goto BAIL;
BAIL:
_cairo_filler_fini (&filler);
return status;
}
/* This special-case filler supports only a path that describes a
* device-axis aligned rectangle. It exists to avoid the overhead of
* the general tessellator when drawing very common rectangles.
*
* If the path described anything but a device-axis aligned rectangle,
* this function will return %CAIRO_INT_STATUS_UNSUPPORTED.
*/
static cairo_int_status_t
_cairo_path_fixed_fill_rectangle (cairo_path_fixed_t *path,
cairo_traps_t *traps)
{
cairo_path_buf_t *buf = &path->buf_head.base;
int final;
/* Ensure the path has the operators we expect for a rectangular path.
*/
if (buf == NULL || buf->num_ops < 5)
return CAIRO_INT_STATUS_UNSUPPORTED;
if (buf->op[0] != CAIRO_PATH_OP_MOVE_TO ||
buf->op[1] != CAIRO_PATH_OP_LINE_TO ||
buf->op[2] != CAIRO_PATH_OP_LINE_TO ||
buf->op[3] != CAIRO_PATH_OP_LINE_TO)
{
return CAIRO_INT_STATUS_UNSUPPORTED;
}
/* Now, there are choices. The rectangle might end with a LINE_TO
* (to the original point), but this isn't required. If it
* doesn't, then it must end with a CLOSE_PATH. */
if (buf->op[4] == CAIRO_PATH_OP_LINE_TO) {
if (buf->points[4].x != buf->points[0].x ||
buf->points[4].y != buf->points[0].y)
{
return CAIRO_INT_STATUS_UNSUPPORTED;
}
} else if (buf->op[4] != CAIRO_PATH_OP_CLOSE_PATH) {
return CAIRO_INT_STATUS_UNSUPPORTED;
}
/* Finally, a trailing CLOSE_PATH or MOVE_TO after the rectangle
* is fine. But anything more than that means we must return
* unsupported. */
final = 5;
if (final < buf->num_ops &&
buf->op[final] == CAIRO_PATH_OP_CLOSE_PATH)
{
final++;
}
if (final < buf->num_ops &&
buf->op[final] == CAIRO_PATH_OP_MOVE_TO)
{
final++;
}
if (final < buf->num_ops)
return CAIRO_INT_STATUS_UNSUPPORTED;
/* Now that we've verified the operators, we must ensure that the
* path coordinates are consistent with a rectangle. There are two
* choices here. */
if (buf->points[0].y == buf->points[1].y &&
buf->points[1].x == buf->points[2].x &&
buf->points[2].y == buf->points[3].y &&
buf->points[3].x == buf->points[0].x)
{
return _cairo_traps_tessellate_convex_quad (traps,
buf->points);
}
if (buf->points[0].x == buf->points[1].x &&
buf->points[1].y == buf->points[2].y &&
buf->points[2].x == buf->points[3].x &&
buf->points[3].y == buf->points[0].y)
{
return _cairo_traps_tessellate_convex_quad (traps,
buf->points);
}
return CAIRO_INT_STATUS_UNSUPPORTED;
}