cairo/src/cairo-path-stroke.c
Chris Wilson 6eead4a5f7 [stroke] Simplify dash-off logic.
Remove a redundant level of if-else branching (and remove a duplicate
code) block by testing dash_on first.
2008-10-06 12:02:29 +01:00

1500 lines
43 KiB
C

/* -*- Mode: c; tab-width: 8; c-basic-offset: 4; indent-tabs-mode: t; -*- */
/* cairo - a vector graphics library with display and print output
*
* Copyright © 2002 University of Southern California
*
* This library is free software; you can redistribute it and/or
* modify it either under the terms of the GNU Lesser General Public
* License version 2.1 as published by the Free Software Foundation
* (the "LGPL") or, at your option, under the terms of the Mozilla
* Public License Version 1.1 (the "MPL"). If you do not alter this
* notice, a recipient may use your version of this file under either
* the MPL or the LGPL.
*
* You should have received a copy of the LGPL along with this library
* in the file COPYING-LGPL-2.1; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
* You should have received a copy of the MPL along with this library
* in the file COPYING-MPL-1.1
*
* The contents of this file are subject to the Mozilla Public License
* Version 1.1 (the "License"); you may not use this file except in
* compliance with the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
* OF ANY KIND, either express or implied. See the LGPL or the MPL for
* the specific language governing rights and limitations.
*
* The Original Code is the cairo graphics library.
*
* The Initial Developer of the Original Code is University of Southern
* California.
*
* Contributor(s):
* Carl D. Worth <cworth@cworth.org>
*/
#include "cairoint.h"
#include "cairo-path-fixed-private.h"
typedef struct cairo_stroker {
cairo_stroke_style_t *style;
cairo_matrix_t *ctm;
cairo_matrix_t *ctm_inverse;
double tolerance;
double ctm_determinant;
cairo_bool_t ctm_det_positive;
cairo_traps_t *traps;
cairo_pen_t pen;
cairo_point_t current_point;
cairo_point_t first_point;
cairo_bool_t has_initial_sub_path;
cairo_bool_t has_current_face;
cairo_stroke_face_t current_face;
cairo_bool_t has_first_face;
cairo_stroke_face_t first_face;
cairo_bool_t dashed;
unsigned int dash_index;
cairo_bool_t dash_on;
cairo_bool_t dash_starts_on;
double dash_remain;
cairo_bool_t has_bounds;
cairo_box_t bounds;
} cairo_stroker_t;
/* private functions */
static cairo_status_t
_cairo_stroker_init (cairo_stroker_t *stroker,
cairo_stroke_style_t *stroke_style,
cairo_matrix_t *ctm,
cairo_matrix_t *ctm_inverse,
double tolerance,
cairo_traps_t *traps);
static void
_cairo_stroker_fini (cairo_stroker_t *stroker);
static cairo_status_t
_cairo_stroker_move_to (void *closure, cairo_point_t *point);
static cairo_status_t
_cairo_stroker_line_to (void *closure, cairo_point_t *point);
static cairo_status_t
_cairo_stroker_line_to_dashed (void *closure, cairo_point_t *point);
static cairo_status_t
_cairo_stroker_curve_to (void *closure,
cairo_point_t *b,
cairo_point_t *c,
cairo_point_t *d);
static cairo_status_t
_cairo_stroker_curve_to_dashed (void *closure,
cairo_point_t *b,
cairo_point_t *c,
cairo_point_t *d);
static cairo_status_t
_cairo_stroker_close_path (void *closure);
static void
_translate_point (cairo_point_t *point, cairo_point_t *offset);
static int
_cairo_stroker_face_clockwise (cairo_stroke_face_t *in, cairo_stroke_face_t *out);
static cairo_status_t
_cairo_stroker_join (cairo_stroker_t *stroker, cairo_stroke_face_t *in, cairo_stroke_face_t *out);
static void
_cairo_stroker_start_dash (cairo_stroker_t *stroker)
{
double offset;
cairo_bool_t on = TRUE;
unsigned int i = 0;
offset = stroker->style->dash_offset;
/* We stop searching for a starting point as soon as the
offset reaches zero. Otherwise when an initial dash
segment shrinks to zero it will be skipped over. */
while (offset > 0.0 && offset >= stroker->style->dash[i]) {
offset -= stroker->style->dash[i];
on = !on;
if (++i == stroker->style->num_dashes)
i = 0;
}
stroker->dashed = TRUE;
stroker->dash_index = i;
stroker->dash_on = stroker->dash_starts_on = on;
stroker->dash_remain = stroker->style->dash[i] - offset;
}
static void
_cairo_stroker_step_dash (cairo_stroker_t *stroker, double step)
{
stroker->dash_remain -= step;
if (stroker->dash_remain <= 0) {
stroker->dash_index++;
if (stroker->dash_index == stroker->style->num_dashes)
stroker->dash_index = 0;
stroker->dash_on = !stroker->dash_on;
stroker->dash_remain = stroker->style->dash[stroker->dash_index];
}
}
static cairo_status_t
_cairo_stroker_init (cairo_stroker_t *stroker,
cairo_stroke_style_t *stroke_style,
cairo_matrix_t *ctm,
cairo_matrix_t *ctm_inverse,
double tolerance,
cairo_traps_t *traps)
{
cairo_status_t status;
stroker->style = stroke_style;
stroker->ctm = ctm;
stroker->ctm_inverse = ctm_inverse;
stroker->tolerance = tolerance;
stroker->traps = traps;
stroker->ctm_determinant = _cairo_matrix_compute_determinant (stroker->ctm);
stroker->ctm_det_positive = stroker->ctm_determinant >= 0.0;
status = _cairo_pen_init (&stroker->pen,
stroke_style->line_width / 2.0,
tolerance, ctm);
if (status)
return status;
stroker->has_current_face = FALSE;
stroker->has_first_face = FALSE;
stroker->has_initial_sub_path = FALSE;
if (stroker->style->dash)
_cairo_stroker_start_dash (stroker);
else
stroker->dashed = FALSE;
stroker->has_bounds = _cairo_traps_get_limit (traps, &stroker->bounds);
if (stroker->has_bounds) {
/* Extend the bounds in each direction to account for the maximum area
* we might generate trapezoids, to capture line segments that are outside
* of the bounds but which might generate rendering that's within bounds.
*/
double dx, dy;
cairo_fixed_t fdx, fdy;
_cairo_stroke_style_max_distance_from_path (stroker->style, stroker->ctm, &dx, &dy);
fdx = _cairo_fixed_from_double (dx);
fdy = _cairo_fixed_from_double (dy);
stroker->bounds.p1.x -= fdx;
stroker->bounds.p2.x += fdx;
stroker->bounds.p1.y -= fdy;
stroker->bounds.p2.y += fdy;
}
return CAIRO_STATUS_SUCCESS;
}
static void
_cairo_stroker_fini (cairo_stroker_t *stroker)
{
_cairo_pen_fini (&stroker->pen);
}
static void
_translate_point (cairo_point_t *point, cairo_point_t *offset)
{
point->x += offset->x;
point->y += offset->y;
}
static int
_cairo_stroker_face_clockwise (cairo_stroke_face_t *in, cairo_stroke_face_t *out)
{
cairo_slope_t in_slope, out_slope;
_cairo_slope_init (&in_slope, &in->point, &in->cw);
_cairo_slope_init (&out_slope, &out->point, &out->cw);
return _cairo_slope_compare (&in_slope, &out_slope) < 0;
}
/**
* _cairo_slope_compare_sgn
*
* Return -1, 0 or 1 depending on the relative slopes of
* two lines.
*/
static int
_cairo_slope_compare_sgn (double dx1, double dy1, double dx2, double dy2)
{
double c = (dx1 * dy2 - dx2 * dy1);
if (c > 0) return 1;
if (c < 0) return -1;
return 0;
}
static cairo_status_t
_cairo_stroker_join (cairo_stroker_t *stroker, cairo_stroke_face_t *in, cairo_stroke_face_t *out)
{
int clockwise = _cairo_stroker_face_clockwise (out, in);
cairo_point_t *inpt, *outpt;
cairo_status_t status;
if (in->cw.x == out->cw.x
&& in->cw.y == out->cw.y
&& in->ccw.x == out->ccw.x
&& in->ccw.y == out->ccw.y)
{
return CAIRO_STATUS_SUCCESS;
}
if (clockwise) {
inpt = &in->ccw;
outpt = &out->ccw;
} else {
inpt = &in->cw;
outpt = &out->cw;
}
switch (stroker->style->line_join) {
case CAIRO_LINE_JOIN_ROUND: {
int i;
int start, step, stop;
cairo_point_t tri[3];
cairo_pen_t *pen = &stroker->pen;
tri[0] = in->point;
if (clockwise) {
_cairo_pen_find_active_ccw_vertex_index (pen, &in->dev_vector, &start);
step = -1;
_cairo_pen_find_active_ccw_vertex_index (pen, &out->dev_vector, &stop);
} else {
_cairo_pen_find_active_cw_vertex_index (pen, &in->dev_vector, &start);
step = +1;
_cairo_pen_find_active_cw_vertex_index (pen, &out->dev_vector, &stop);
}
i = start;
tri[1] = *inpt;
while (i != stop) {
tri[2] = in->point;
_translate_point (&tri[2], &pen->vertices[i].point);
status = _cairo_traps_tessellate_triangle (stroker->traps, tri);
if (status)
return status;
tri[1] = tri[2];
i += step;
if (i < 0)
i = pen->num_vertices - 1;
if (i >= pen->num_vertices)
i = 0;
}
tri[2] = *outpt;
return _cairo_traps_tessellate_triangle (stroker->traps, tri);
}
case CAIRO_LINE_JOIN_MITER:
default: {
/* dot product of incoming slope vector with outgoing slope vector */
double in_dot_out = ((-in->usr_vector.x * out->usr_vector.x)+
(-in->usr_vector.y * out->usr_vector.y));
double ml = stroker->style->miter_limit;
/* Check the miter limit -- lines meeting at an acute angle
* can generate long miters, the limit converts them to bevel
*
* Consider the miter join formed when two line segments
* meet at an angle psi:
*
* /.\
* /. .\
* /./ \.\
* /./psi\.\
*
* We can zoom in on the right half of that to see:
*
* |\
* | \ psi/2
* | \
* | \
* | \
* | \
* miter \
* length \
* | \
* | .\
* | . \
* |. line \
* \ width \
* \ \
*
*
* The right triangle in that figure, (the line-width side is
* shown faintly with three '.' characters), gives us the
* following expression relating miter length, angle and line
* width:
*
* 1 /sin (psi/2) = miter_length / line_width
*
* The right-hand side of this relationship is the same ratio
* in which the miter limit (ml) is expressed. We want to know
* when the miter length is within the miter limit. That is
* when the following condition holds:
*
* 1/sin(psi/2) <= ml
* 1 <= ml sin(psi/2)
* 1 <= ml² sin²(psi/2)
* 2 <= ml² 2 sin²(psi/2)
* 2·sin²(psi/2) = 1-cos(psi)
* 2 <= ml² (1-cos(psi))
*
* in · out = |in| |out| cos (psi)
*
* in and out are both unit vectors, so:
*
* in · out = cos (psi)
*
* 2 <= ml² (1 - in · out)
*
*/
if (2 <= ml * ml * (1 - in_dot_out))
{
double x1, y1, x2, y2;
double mx, my;
double dx1, dx2, dy1, dy2;
cairo_point_t outer;
cairo_point_t quad[4];
double ix, iy;
double fdx1, fdy1, fdx2, fdy2;
double mdx, mdy;
/*
* we've got the points already transformed to device
* space, but need to do some computation with them and
* also need to transform the slope from user space to
* device space
*/
/* outer point of incoming line face */
x1 = _cairo_fixed_to_double (inpt->x);
y1 = _cairo_fixed_to_double (inpt->y);
dx1 = in->usr_vector.x;
dy1 = in->usr_vector.y;
cairo_matrix_transform_distance (stroker->ctm, &dx1, &dy1);
/* outer point of outgoing line face */
x2 = _cairo_fixed_to_double (outpt->x);
y2 = _cairo_fixed_to_double (outpt->y);
dx2 = out->usr_vector.x;
dy2 = out->usr_vector.y;
cairo_matrix_transform_distance (stroker->ctm, &dx2, &dy2);
/*
* Compute the location of the outer corner of the miter.
* That's pretty easy -- just the intersection of the two
* outer edges. We've got slopes and points on each
* of those edges. Compute my directly, then compute
* mx by using the edge with the larger dy; that avoids
* dividing by values close to zero.
*/
my = (((x2 - x1) * dy1 * dy2 - y2 * dx2 * dy1 + y1 * dx1 * dy2) /
(dx1 * dy2 - dx2 * dy1));
if (fabs (dy1) >= fabs (dy2))
mx = (my - y1) * dx1 / dy1 + x1;
else
mx = (my - y2) * dx2 / dy2 + x2;
/*
* When the two outer edges are nearly parallel, slight
* perturbations in the position of the outer points of the lines
* caused by representing them in fixed point form can cause the
* intersection point of the miter to move a large amount. If
* that moves the miter intersection from between the two faces,
* then draw a bevel instead.
*/
ix = _cairo_fixed_to_double (in->point.x);
iy = _cairo_fixed_to_double (in->point.y);
/* slope of one face */
fdx1 = x1 - ix; fdy1 = y1 - iy;
/* slope of the other face */
fdx2 = x2 - ix; fdy2 = y2 - iy;
/* slope from the intersection to the miter point */
mdx = mx - ix; mdy = my - iy;
/*
* Make sure the miter point line lies between the two
* faces by comparing the slopes
*/
if (_cairo_slope_compare_sgn (fdx1, fdy1, mdx, mdy) !=
_cairo_slope_compare_sgn (fdx2, fdy2, mdx, mdy))
{
/*
* Draw the quadrilateral
*/
outer.x = _cairo_fixed_from_double (mx);
outer.y = _cairo_fixed_from_double (my);
quad[0] = in->point;
quad[1] = *inpt;
quad[2] = outer;
quad[3] = *outpt;
return _cairo_traps_tessellate_convex_quad (stroker->traps, quad);
}
}
/* fall through ... */
}
case CAIRO_LINE_JOIN_BEVEL: {
cairo_point_t tri[3];
tri[0] = in->point;
tri[1] = *inpt;
tri[2] = *outpt;
return _cairo_traps_tessellate_triangle (stroker->traps, tri);
}
}
}
static cairo_status_t
_cairo_stroker_add_cap (cairo_stroker_t *stroker, cairo_stroke_face_t *f)
{
cairo_status_t status;
if (stroker->style->line_cap == CAIRO_LINE_CAP_BUTT)
return CAIRO_STATUS_SUCCESS;
switch (stroker->style->line_cap) {
case CAIRO_LINE_CAP_ROUND: {
int i;
int start, stop;
cairo_slope_t slope;
cairo_point_t tri[3];
cairo_pen_t *pen = &stroker->pen;
slope = f->dev_vector;
_cairo_pen_find_active_cw_vertex_index (pen, &slope, &start);
slope.dx = -slope.dx;
slope.dy = -slope.dy;
_cairo_pen_find_active_cw_vertex_index (pen, &slope, &stop);
tri[0] = f->point;
tri[1] = f->cw;
for (i=start; i != stop; i = (i+1) % pen->num_vertices) {
tri[2] = f->point;
_translate_point (&tri[2], &pen->vertices[i].point);
status = _cairo_traps_tessellate_triangle (stroker->traps, tri);
if (status)
return status;
tri[1] = tri[2];
}
tri[2] = f->ccw;
return _cairo_traps_tessellate_triangle (stroker->traps, tri);
}
case CAIRO_LINE_CAP_SQUARE: {
double dx, dy;
cairo_slope_t fvector;
cairo_point_t occw, ocw;
cairo_polygon_t polygon;
dx = f->usr_vector.x;
dy = f->usr_vector.y;
dx *= stroker->style->line_width / 2.0;
dy *= stroker->style->line_width / 2.0;
cairo_matrix_transform_distance (stroker->ctm, &dx, &dy);
fvector.dx = _cairo_fixed_from_double (dx);
fvector.dy = _cairo_fixed_from_double (dy);
occw.x = f->ccw.x + fvector.dx;
occw.y = f->ccw.y + fvector.dy;
ocw.x = f->cw.x + fvector.dx;
ocw.y = f->cw.y + fvector.dy;
_cairo_polygon_init (&polygon);
_cairo_polygon_move_to (&polygon, &f->cw);
_cairo_polygon_line_to (&polygon, &ocw);
_cairo_polygon_line_to (&polygon, &occw);
_cairo_polygon_line_to (&polygon, &f->ccw);
_cairo_polygon_close (&polygon);
status = _cairo_polygon_status (&polygon);
if (status == CAIRO_STATUS_SUCCESS) {
status = _cairo_bentley_ottmann_tessellate_polygon (stroker->traps,
&polygon,
CAIRO_FILL_RULE_WINDING);
}
_cairo_polygon_fini (&polygon);
return status;
}
case CAIRO_LINE_CAP_BUTT:
default:
return CAIRO_STATUS_SUCCESS;
}
}
static cairo_status_t
_cairo_stroker_add_leading_cap (cairo_stroker_t *stroker,
cairo_stroke_face_t *face)
{
cairo_stroke_face_t reversed;
cairo_point_t t;
reversed = *face;
/* The initial cap needs an outward facing vector. Reverse everything */
reversed.usr_vector.x = -reversed.usr_vector.x;
reversed.usr_vector.y = -reversed.usr_vector.y;
reversed.dev_vector.dx = -reversed.dev_vector.dx;
reversed.dev_vector.dy = -reversed.dev_vector.dy;
t = reversed.cw;
reversed.cw = reversed.ccw;
reversed.ccw = t;
return _cairo_stroker_add_cap (stroker, &reversed);
}
static cairo_status_t
_cairo_stroker_add_trailing_cap (cairo_stroker_t *stroker,
cairo_stroke_face_t *face)
{
return _cairo_stroker_add_cap (stroker, face);
}
static inline cairo_bool_t
_compute_normalized_device_slope (double *dx, double *dy, cairo_matrix_t *ctm_inverse, double *mag_out)
{
double dx0 = *dx, dy0 = *dy;
double mag;
cairo_matrix_transform_distance (ctm_inverse, &dx0, &dy0);
if (dx0 == 0.0 && dy0 == 0.0) {
if (mag_out)
*mag_out = 0.0;
return FALSE;
}
if (dx0 == 0.0) {
*dx = 0.0;
if (dy0 > 0.0) {
mag = dy0;
*dy = 1.0;
} else {
mag = -dy0;
*dy = -1.0;
}
} else if (dy0 == 0.0) {
*dy = 0.0;
if (dx0 > 0.0) {
mag = dx0;
*dx = 1.0;
} else {
mag = -dx0;
*dx = -1.0;
}
} else {
mag = sqrt (dx0 * dx0 + dy0 * dy0);
*dx = dx0 / mag;
*dy = dy0 / mag;
}
if (mag_out)
*mag_out = mag;
return TRUE;
}
static void
_compute_face (cairo_point_t *point, cairo_slope_t *dev_slope,
double slope_dx, double slope_dy,
cairo_stroker_t *stroker, cairo_stroke_face_t *face);
static cairo_status_t
_cairo_stroker_add_caps (cairo_stroker_t *stroker)
{
cairo_status_t status;
/* check for a degenerative sub_path */
if (stroker->has_initial_sub_path
&& !stroker->has_first_face
&& !stroker->has_current_face
&& stroker->style->line_cap == CAIRO_LINE_JOIN_ROUND)
{
/* pick an arbitrary slope to use */
double dx = 1.0, dy = 0.0;
cairo_slope_t slope = { CAIRO_FIXED_ONE, 0 };
cairo_stroke_face_t face;
_compute_normalized_device_slope (&dx, &dy, stroker->ctm_inverse, NULL);
/* arbitrarily choose first_point
* first_point and current_point should be the same */
_compute_face (&stroker->first_point, &slope, dx, dy, stroker, &face);
status = _cairo_stroker_add_leading_cap (stroker, &face);
if (status)
return status;
status = _cairo_stroker_add_trailing_cap (stroker, &face);
if (status)
return status;
}
if (stroker->has_first_face) {
status = _cairo_stroker_add_leading_cap (stroker, &stroker->first_face);
if (status)
return status;
}
if (stroker->has_current_face) {
status = _cairo_stroker_add_trailing_cap (stroker, &stroker->current_face);
if (status)
return status;
}
return CAIRO_STATUS_SUCCESS;
}
static void
_compute_face (cairo_point_t *point, cairo_slope_t *dev_slope,
double slope_dx, double slope_dy,
cairo_stroker_t *stroker, cairo_stroke_face_t *face)
{
double face_dx, face_dy;
cairo_point_t offset_ccw, offset_cw;
/*
* rotate to get a line_width/2 vector along the face, note that
* the vector must be rotated the right direction in device space,
* but by 90° in user space. So, the rotation depends on
* whether the ctm reflects or not, and that can be determined
* by looking at the determinant of the matrix.
*/
if (stroker->ctm_det_positive)
{
face_dx = - slope_dy * (stroker->style->line_width / 2.0);
face_dy = slope_dx * (stroker->style->line_width / 2.0);
}
else
{
face_dx = slope_dy * (stroker->style->line_width / 2.0);
face_dy = - slope_dx * (stroker->style->line_width / 2.0);
}
/* back to device space */
cairo_matrix_transform_distance (stroker->ctm, &face_dx, &face_dy);
offset_ccw.x = _cairo_fixed_from_double (face_dx);
offset_ccw.y = _cairo_fixed_from_double (face_dy);
offset_cw.x = -offset_ccw.x;
offset_cw.y = -offset_ccw.y;
face->ccw = *point;
_translate_point (&face->ccw, &offset_ccw);
face->point = *point;
face->cw = *point;
_translate_point (&face->cw, &offset_cw);
face->usr_vector.x = slope_dx;
face->usr_vector.y = slope_dy;
face->dev_vector = *dev_slope;
}
static cairo_status_t
_cairo_stroker_add_sub_edge (cairo_stroker_t *stroker, cairo_point_t *p1, cairo_point_t *p2,
cairo_slope_t *dev_slope, double slope_dx, double slope_dy,
cairo_stroke_face_t *start, cairo_stroke_face_t *end)
{
cairo_point_t rectangle[4];
_compute_face (p1, dev_slope, slope_dx, slope_dy, stroker, start);
/* XXX: This could be optimized slightly by not calling
_compute_face again but rather translating the relevant
fields from start. */
_compute_face (p2, dev_slope, slope_dx, slope_dy, stroker, end);
if (p1->x == p2->x && p1->y == p2->y)
return CAIRO_STATUS_SUCCESS;
rectangle[0] = start->cw;
rectangle[1] = start->ccw;
rectangle[2] = end->ccw;
rectangle[3] = end->cw;
return _cairo_traps_tessellate_convex_quad (stroker->traps, rectangle);
}
static cairo_status_t
_cairo_stroker_move_to (void *closure, cairo_point_t *point)
{
cairo_status_t status;
cairo_stroker_t *stroker = closure;
/* Cap the start and end of the previous sub path as needed */
status = _cairo_stroker_add_caps (stroker);
if (status)
return status;
stroker->first_point = *point;
stroker->current_point = *point;
stroker->has_first_face = FALSE;
stroker->has_current_face = FALSE;
stroker->has_initial_sub_path = FALSE;
return CAIRO_STATUS_SUCCESS;
}
static cairo_status_t
_cairo_stroker_move_to_dashed (void *closure, cairo_point_t *point)
{
/* reset the dash pattern for new sub paths */
cairo_stroker_t *stroker = closure;
_cairo_stroker_start_dash (stroker);
return _cairo_stroker_move_to (closure, point);
}
static cairo_status_t
_cairo_stroker_line_to (void *closure, cairo_point_t *point)
{
cairo_status_t status;
cairo_stroker_t *stroker = closure;
cairo_stroke_face_t start, end;
cairo_point_t *p1 = &stroker->current_point;
cairo_point_t *p2 = point;
cairo_slope_t dev_slope;
double slope_dx, slope_dy;
stroker->has_initial_sub_path = TRUE;
if (p1->x == p2->x && p1->y == p2->y)
return CAIRO_STATUS_SUCCESS;
_cairo_slope_init (&dev_slope, p1, p2);
slope_dx = _cairo_fixed_to_double (p2->x - p1->x);
slope_dy = _cairo_fixed_to_double (p2->y - p1->y);
_compute_normalized_device_slope (&slope_dx, &slope_dy, stroker->ctm_inverse, NULL);
status = _cairo_stroker_add_sub_edge (stroker, p1, p2, &dev_slope, slope_dx, slope_dy, &start, &end);
if (status)
return status;
if (stroker->has_current_face) {
/* Join with final face from previous segment */
status = _cairo_stroker_join (stroker, &stroker->current_face, &start);
if (status)
return status;
} else if (!stroker->has_first_face) {
/* Save sub path's first face in case needed for closing join */
stroker->first_face = start;
stroker->has_first_face = TRUE;
}
stroker->current_face = end;
stroker->has_current_face = TRUE;
stroker->current_point = *point;
return CAIRO_STATUS_SUCCESS;
}
/*
* Dashed lines. Cap each dash end, join around turns when on
*/
static cairo_status_t
_cairo_stroker_line_to_dashed (void *closure, cairo_point_t *point)
{
cairo_status_t status = CAIRO_STATUS_SUCCESS;
cairo_stroker_t *stroker = closure;
double mag, remain, step_length = 0;
double slope_dx, slope_dy;
double dx2, dy2;
cairo_stroke_face_t sub_start, sub_end;
cairo_point_t *p1 = &stroker->current_point;
cairo_point_t *p2 = point;
cairo_slope_t dev_slope;
cairo_bool_t fully_in_bounds = TRUE;
cairo_line_t segment;
stroker->has_initial_sub_path = stroker->dash_starts_on;
if (p1->x == p2->x && p1->y == p2->y)
return CAIRO_STATUS_SUCCESS;
if (stroker->has_bounds &&
(!_cairo_box_contains_point (&stroker->bounds, p1) ||
!_cairo_box_contains_point (&stroker->bounds, p2)))
{
fully_in_bounds = FALSE;
}
_cairo_slope_init (&dev_slope, p1, p2);
slope_dx = _cairo_fixed_to_double (p2->x - p1->x);
slope_dy = _cairo_fixed_to_double (p2->y - p1->y);
if (!_compute_normalized_device_slope (&slope_dx, &slope_dy, stroker->ctm_inverse, &mag))
return CAIRO_STATUS_SUCCESS;
remain = mag;
segment.p1 = *p1;
while (remain) {
step_length = MIN (stroker->dash_remain, remain);
remain -= step_length;
dx2 = slope_dx * (mag - remain);
dy2 = slope_dy * (mag - remain);
cairo_matrix_transform_distance (stroker->ctm, &dx2, &dy2);
segment.p2.x = _cairo_fixed_from_double (dx2) + p1->x;
segment.p2.y = _cairo_fixed_from_double (dy2) + p1->y;
if (stroker->dash_on &&
(fully_in_bounds ||
_cairo_box_intersects_line_segment (&stroker->bounds, &segment)))
{
status = _cairo_stroker_add_sub_edge (stroker, &segment.p1, &segment.p2, &dev_slope, slope_dx, slope_dy, &sub_start, &sub_end);
if (status)
return status;
if (stroker->has_current_face) {
/* Join with final face from previous segment */
status = _cairo_stroker_join (stroker, &stroker->current_face, &sub_start);
stroker->has_current_face = FALSE;
if (status)
return status;
} else if (!stroker->has_first_face && stroker->dash_starts_on) {
/* Save sub path's first face in case needed for closing join */
stroker->first_face = sub_start;
stroker->has_first_face = TRUE;
} else {
/* Cap dash start if not connecting to a previous segment */
status = _cairo_stroker_add_leading_cap (stroker, &sub_start);
if (status)
return status;
}
if (remain) {
/* Cap dash end if not at end of segment */
status = _cairo_stroker_add_trailing_cap (stroker, &sub_end);
if (status)
return status;
} else {
stroker->current_face = sub_end;
stroker->has_current_face = TRUE;
}
} else {
if (stroker->has_current_face) {
/* Cap final face from previous segment */
status = _cairo_stroker_add_trailing_cap (stroker, &stroker->current_face);
if (status)
return status;
stroker->has_current_face = FALSE;
}
}
_cairo_stroker_step_dash (stroker, step_length);
segment.p1 = segment.p2;
}
if (stroker->dash_on && !stroker->has_current_face) {
/* This segment ends on a transition to dash_on, compute a new face
* and add cap for the begining of the next dash_on step.
*
* Note: this will create a degenerate cap if this is not the last line
* in the path. Whether this behaviour is desirable or not is debatable.
* On one side these degnerate caps can not be reproduced with regular path stroking.
* On the other side Acroread 7 also produces the degenerate caps. */
_compute_face (point, &dev_slope, slope_dx, slope_dy, stroker, &stroker->current_face);
stroker->has_current_face = TRUE;
status = _cairo_stroker_add_leading_cap (stroker, &stroker->current_face);
if (status)
return status;
}
stroker->current_point = *point;
return status;
}
static cairo_status_t
_cairo_stroker_curve_to (void *closure,
cairo_point_t *b,
cairo_point_t *c,
cairo_point_t *d)
{
cairo_status_t status = CAIRO_STATUS_SUCCESS;
cairo_stroker_t *stroker = closure;
cairo_spline_t spline;
cairo_pen_t pen;
cairo_stroke_face_t start, end;
cairo_point_t extra_points[4];
cairo_point_t *a = &stroker->current_point;
double initial_slope_dx, initial_slope_dy;
double final_slope_dx, final_slope_dy;
status = _cairo_spline_init (&spline, a, b, c, d);
if (status == CAIRO_INT_STATUS_DEGENERATE)
return _cairo_stroker_line_to (closure, d);
status = _cairo_pen_init_copy (&pen, &stroker->pen);
if (status)
goto CLEANUP_SPLINE;
initial_slope_dx = _cairo_fixed_to_double (spline.initial_slope.dx);
initial_slope_dy = _cairo_fixed_to_double (spline.initial_slope.dy);
final_slope_dx = _cairo_fixed_to_double (spline.final_slope.dx);
final_slope_dy = _cairo_fixed_to_double (spline.final_slope.dy);
if (_compute_normalized_device_slope (&initial_slope_dx, &initial_slope_dy, stroker->ctm_inverse, NULL))
_compute_face (a, &spline.initial_slope, initial_slope_dx, initial_slope_dy, stroker, &start);
if (_compute_normalized_device_slope (&final_slope_dx, &final_slope_dy, stroker->ctm_inverse, NULL))
_compute_face (d, &spline.final_slope, final_slope_dx, final_slope_dy, stroker, &end);
if (stroker->has_current_face) {
status = _cairo_stroker_join (stroker, &stroker->current_face, &start);
if (status)
goto CLEANUP_PEN;
} else if (!stroker->has_first_face) {
stroker->first_face = start;
stroker->has_first_face = TRUE;
}
stroker->current_face = end;
stroker->has_current_face = TRUE;
extra_points[0] = start.cw;
extra_points[0].x -= start.point.x;
extra_points[0].y -= start.point.y;
extra_points[1] = start.ccw;
extra_points[1].x -= start.point.x;
extra_points[1].y -= start.point.y;
extra_points[2] = end.cw;
extra_points[2].x -= end.point.x;
extra_points[2].y -= end.point.y;
extra_points[3] = end.ccw;
extra_points[3].x -= end.point.x;
extra_points[3].y -= end.point.y;
status = _cairo_pen_add_points (&pen, extra_points, 4);
if (status)
goto CLEANUP_PEN;
status = _cairo_pen_stroke_spline (&pen, &spline, stroker->tolerance, stroker->traps);
if (status)
goto CLEANUP_PEN;
CLEANUP_PEN:
_cairo_pen_fini (&pen);
CLEANUP_SPLINE:
_cairo_spline_fini (&spline);
stroker->current_point = *d;
return status;
}
/* We're using two different algorithms here for dashed and un-dashed
* splines. The dashed algorithm uses the existing line dashing
* code. It's linear in path length, but gets subtly wrong results for
* self-intersecting paths (an outstanding but for self-intersecting
* non-curved paths as well). The non-dashed algorithm tessellates a
* single polygon for the whole curve. It handles the
* self-intersecting problem, but it's (unsurprisingly) not O(n) and
* more significantly, it doesn't yet handle dashes.
*
* The only reason we're doing split algorithms here is to
* minimize the impact of fixing the splines-aren't-dashed bug for
* 1.0.2. Long-term the right answer is to rewrite the whole pile
* of stroking code so that the entire result is computed as a
* single polygon that is tessellated, (that is, stroking can be
* built on top of filling). That will solve the self-intersecting
* problem. It will also increase the importance of implementing
* an efficient and more robust tessellator.
*/
static cairo_status_t
_cairo_stroker_curve_to_dashed (void *closure,
cairo_point_t *b,
cairo_point_t *c,
cairo_point_t *d)
{
cairo_status_t status = CAIRO_STATUS_SUCCESS;
cairo_stroker_t *stroker = closure;
cairo_spline_t spline;
cairo_point_t *a = &stroker->current_point;
cairo_line_join_t line_join_save;
int i;
status = _cairo_spline_init (&spline, a, b, c, d);
if (status == CAIRO_INT_STATUS_DEGENERATE)
return _cairo_stroker_line_to_dashed (closure, d);
/* If the line width is so small that the pen is reduced to a
single point, then we have nothing to do. */
if (stroker->pen.num_vertices <= 1)
goto CLEANUP_SPLINE;
/* Temporarily modify the stroker to use round joins to guarantee
* smooth stroked curves. */
line_join_save = stroker->style->line_join;
stroker->style->line_join = CAIRO_LINE_JOIN_ROUND;
status = _cairo_spline_decompose (&spline, stroker->tolerance);
if (status)
goto CLEANUP_GSTATE;
for (i = 1; i < spline.num_points; i++) {
if (stroker->dashed)
status = _cairo_stroker_line_to_dashed (stroker, &spline.points[i]);
else
status = _cairo_stroker_line_to (stroker, &spline.points[i]);
if (status)
break;
}
CLEANUP_GSTATE:
stroker->style->line_join = line_join_save;
CLEANUP_SPLINE:
_cairo_spline_fini (&spline);
return status;
}
static cairo_status_t
_cairo_stroker_close_path (void *closure)
{
cairo_status_t status;
cairo_stroker_t *stroker = closure;
if (stroker->dashed)
status = _cairo_stroker_line_to_dashed (stroker, &stroker->first_point);
else
status = _cairo_stroker_line_to (stroker, &stroker->first_point);
if (status)
return status;
if (stroker->has_first_face && stroker->has_current_face) {
/* Join first and final faces of sub path */
status = _cairo_stroker_join (stroker, &stroker->current_face, &stroker->first_face);
if (status)
return status;
} else {
/* Cap the start and end of the sub path as needed */
status = _cairo_stroker_add_caps (stroker);
if (status)
return status;
}
stroker->has_initial_sub_path = FALSE;
stroker->has_first_face = FALSE;
stroker->has_current_face = FALSE;
return CAIRO_STATUS_SUCCESS;
}
static cairo_int_status_t
_cairo_path_fixed_stroke_rectilinear (cairo_path_fixed_t *path,
cairo_stroke_style_t *stroke_style,
cairo_matrix_t *ctm,
cairo_traps_t *traps);
cairo_status_t
_cairo_path_fixed_stroke_to_traps (cairo_path_fixed_t *path,
cairo_stroke_style_t *stroke_style,
cairo_matrix_t *ctm,
cairo_matrix_t *ctm_inverse,
double tolerance,
cairo_traps_t *traps)
{
cairo_status_t status;
cairo_stroker_t stroker;
/* Before we do anything else, we attempt the rectilinear
* stroker. It's careful to generate trapezoids that align to
* device-pixel boundaries when possible. Many backends can render
* those much faster than non-aligned trapezoids, (by using clip
* regions, etc.) */
status = _cairo_path_fixed_stroke_rectilinear (path,
stroke_style,
ctm,
traps);
if (status != CAIRO_INT_STATUS_UNSUPPORTED)
return status;
status = _cairo_stroker_init (&stroker, stroke_style,
ctm, ctm_inverse, tolerance,
traps);
if (status)
return status;
if (stroker.style->dash)
status = _cairo_path_fixed_interpret (path,
CAIRO_DIRECTION_FORWARD,
_cairo_stroker_move_to_dashed,
_cairo_stroker_line_to_dashed,
_cairo_stroker_curve_to_dashed,
_cairo_stroker_close_path,
&stroker);
else
status = _cairo_path_fixed_interpret (path,
CAIRO_DIRECTION_FORWARD,
_cairo_stroker_move_to,
_cairo_stroker_line_to,
_cairo_stroker_curve_to,
_cairo_stroker_close_path,
&stroker);
if (status)
goto BAIL;
/* Cap the start and end of the final sub path as needed */
status = _cairo_stroker_add_caps (&stroker);
BAIL:
_cairo_stroker_fini (&stroker);
return status;
}
typedef struct _cairo_rectilinear_stroker
{
cairo_stroke_style_t *stroke_style;
cairo_fixed_t half_line_width;
cairo_traps_t *traps;
cairo_point_t current_point;
cairo_point_t first_point;
cairo_bool_t open_sub_path;
int num_segments;
int segments_size;
cairo_line_t *segments;
cairo_line_t segments_embedded[8]; /* common case is a single rectangle */
} cairo_rectilinear_stroker_t;
static void
_cairo_rectilinear_stroker_init (cairo_rectilinear_stroker_t *stroker,
cairo_stroke_style_t *stroke_style,
cairo_traps_t *traps)
{
stroker->stroke_style = stroke_style;
stroker->half_line_width =
_cairo_fixed_from_double (stroke_style->line_width / 2.0);
stroker->traps = traps;
stroker->open_sub_path = FALSE;
stroker->segments = stroker->segments_embedded;
stroker->segments_size = ARRAY_LENGTH (stroker->segments_embedded);
stroker->num_segments = 0;
}
static void
_cairo_rectilinear_stroker_fini (cairo_rectilinear_stroker_t *stroker)
{
if (stroker->segments != stroker->segments_embedded)
free (stroker->segments);
}
static cairo_status_t
_cairo_rectilinear_stroker_add_segment (cairo_rectilinear_stroker_t *stroker,
cairo_point_t *p1,
cairo_point_t *p2)
{
if (stroker->num_segments == stroker->segments_size) {
int new_size = stroker->segments_size * 2;
cairo_line_t *new_segments;
if (stroker->segments == stroker->segments_embedded) {
new_segments = _cairo_malloc_ab (new_size, sizeof (cairo_line_t));
if (new_segments == NULL)
return _cairo_error (CAIRO_STATUS_NO_MEMORY);
memcpy (new_segments, stroker->segments,
stroker->num_segments * sizeof (cairo_line_t));
} else {
new_segments = _cairo_realloc_ab (stroker->segments,
new_size, sizeof (cairo_line_t));
if (new_segments == NULL)
return _cairo_error (CAIRO_STATUS_NO_MEMORY);
}
stroker->segments_size = new_size;
stroker->segments = new_segments;
}
stroker->segments[stroker->num_segments].p1 = *p1;
stroker->segments[stroker->num_segments].p2 = *p2;
stroker->num_segments++;
return CAIRO_STATUS_SUCCESS;
}
static cairo_status_t
_cairo_rectilinear_stroker_emit_segments (cairo_rectilinear_stroker_t *stroker)
{
cairo_status_t status;
cairo_line_cap_t line_cap = stroker->stroke_style->line_cap;
cairo_fixed_t half_line_width = stroker->half_line_width;
int i;
for (i = 0; i < stroker->num_segments; i++) {
cairo_point_t *a, *b;
cairo_bool_t lengthen_initial, shorten_final, lengthen_final;
a = &stroker->segments[i].p1;
b = &stroker->segments[i].p2;
/* For each segment we generate a single rectangular
* trapezoid. This rectangle is based on a perpendicular
* extension (by half the line width) of the segment endpoints
* after some adjustments of the endpoints to account for caps
* and joins.
*/
/* We adjust the initial point of the segment to extend the
* rectangle to include the previous cap or join, (this
* adjustment applies to all segments except for the first
* segment of open, butt-capped paths).
*/
lengthen_initial = TRUE;
if (i == 0 && stroker->open_sub_path && line_cap == CAIRO_LINE_CAP_BUTT)
lengthen_initial = FALSE;
/* The adjustment of the final point is trickier. For all but
* the last segment we shorten the segment at the final
* endpoint to not overlap with the subsequent join. For the
* last segment we do the same shortening if the path is
* closed. If the path is open and butt-capped we do no
* adjustment, while if it's open and square-capped we do a
* lengthening adjustment instead to include the cap.
*/
shorten_final = TRUE;
lengthen_final = FALSE;
if (i == stroker->num_segments - 1 && stroker->open_sub_path) {
shorten_final = FALSE;
if (line_cap == CAIRO_LINE_CAP_SQUARE)
lengthen_final = TRUE;
}
/* Perform the adjustments of the endpoints. */
if (a->y == b->y) {
if (a->x < b->x) {
if (lengthen_initial)
a->x -= half_line_width;
if (shorten_final)
b->x -= half_line_width;
else if (lengthen_final)
b->x += half_line_width;
} else {
if (lengthen_initial)
a->x += half_line_width;
if (shorten_final)
b->x += half_line_width;
else if (lengthen_final)
b->x -= half_line_width;
}
if (a->x > b->x) {
cairo_point_t *t;
t = a;
a = b;
b = t;
}
} else {
if (a->y < b->y) {
if (lengthen_initial)
a->y -= half_line_width;
if (shorten_final)
b->y -= half_line_width;
else if (lengthen_final)
b->y += half_line_width;
} else {
if (lengthen_initial)
a->y += half_line_width;
if (shorten_final)
b->y += half_line_width;
else if (lengthen_final)
b->y -= half_line_width;
}
if (a->y > b->y) {
cairo_point_t *t;
t = a;
a = b;
b = t;
}
}
/* Form the rectangle by expanding by half the line width in
* either perpendicular direction. */
if (a->y == b->y) {
a->y -= half_line_width;
b->y += half_line_width;
} else {
a->x -= half_line_width;
b->x += half_line_width;
}
status = _cairo_traps_tessellate_rectangle (stroker->traps, a, b);
if (status)
return status;
}
stroker->num_segments = 0;
return CAIRO_STATUS_SUCCESS;
}
static cairo_status_t
_cairo_rectilinear_stroker_move_to (void *closure,
cairo_point_t *point)
{
cairo_rectilinear_stroker_t *stroker = closure;
cairo_status_t status;
status = _cairo_rectilinear_stroker_emit_segments (stroker);
if (status)
return status;
stroker->current_point = *point;
stroker->first_point = *point;
return CAIRO_STATUS_SUCCESS;
}
static cairo_status_t
_cairo_rectilinear_stroker_line_to (void *closure,
cairo_point_t *point)
{
cairo_rectilinear_stroker_t *stroker = closure;
cairo_point_t *a = &stroker->current_point;
cairo_point_t *b = point;
cairo_status_t status;
/* We only support horizontal or vertical elements. */
if (! (a->x == b->x || a->y == b->y))
return CAIRO_INT_STATUS_UNSUPPORTED;
/* We don't draw anything for degenerate paths. */
if (a->x == b->x && a->y == b->y)
return CAIRO_STATUS_SUCCESS;
status = _cairo_rectilinear_stroker_add_segment (stroker, a, b);
stroker->current_point = *point;
stroker->open_sub_path = TRUE;
return status;
}
static cairo_status_t
_cairo_rectilinear_stroker_close_path (void *closure)
{
cairo_rectilinear_stroker_t *stroker = closure;
cairo_status_t status;
/* We don't draw anything for degenerate paths. */
if (! stroker->open_sub_path)
return CAIRO_STATUS_SUCCESS;
status = _cairo_rectilinear_stroker_line_to (stroker,
&stroker->first_point);
if (status)
return status;
stroker->open_sub_path = FALSE;
status = _cairo_rectilinear_stroker_emit_segments (stroker);
if (status)
return status;
return CAIRO_STATUS_SUCCESS;
}
static cairo_int_status_t
_cairo_path_fixed_stroke_rectilinear (cairo_path_fixed_t *path,
cairo_stroke_style_t *stroke_style,
cairo_matrix_t *ctm,
cairo_traps_t *traps)
{
cairo_rectilinear_stroker_t rectilinear_stroker;
cairo_int_status_t status;
/* This special-case rectilinear stroker only supports
* miter-joined lines (not curves) and no dashing and a
* translation-only matrix (though it could probably be extended
* to support a matrix with uniform, integer scaling).
*
* It also only supports horizontal and vertical line_to
* elements. But we don't catch that here, but instead return
* UNSUPPORTED from _cairo_rectilinear_stroker_line_to if any
* non-rectilinear line_to is encountered.
*/
if (path->has_curve_to)
return CAIRO_INT_STATUS_UNSUPPORTED;
if (stroke_style->line_join != CAIRO_LINE_JOIN_MITER)
return CAIRO_INT_STATUS_UNSUPPORTED;
/* If the miter limit turns right angles into bevels, then we
* can't use this optimization. Remember, the ratio is
* 1/sin(ɸ/2). So the cutoff is 1/sin(π/4.0) or ⎷2,
* which we round for safety. */
if (stroke_style->miter_limit < M_SQRT2)
return CAIRO_INT_STATUS_UNSUPPORTED;
if (stroke_style->dash)
return CAIRO_INT_STATUS_UNSUPPORTED;
if (! (stroke_style->line_cap == CAIRO_LINE_CAP_BUTT ||
stroke_style->line_cap == CAIRO_LINE_CAP_SQUARE))
{
return CAIRO_INT_STATUS_UNSUPPORTED;
}
if (! (_cairo_matrix_is_identity (ctm) ||
_cairo_matrix_is_translation (ctm)))
{
return CAIRO_INT_STATUS_UNSUPPORTED;
}
_cairo_rectilinear_stroker_init (&rectilinear_stroker, stroke_style, traps);
status = _cairo_path_fixed_interpret (path,
CAIRO_DIRECTION_FORWARD,
_cairo_rectilinear_stroker_move_to,
_cairo_rectilinear_stroker_line_to,
NULL,
_cairo_rectilinear_stroker_close_path,
&rectilinear_stroker);
if (status)
goto BAIL;
status = _cairo_rectilinear_stroker_emit_segments (&rectilinear_stroker);
BAIL:
_cairo_rectilinear_stroker_fini (&rectilinear_stroker);
if (status)
_cairo_traps_clear (traps);
return status;
}