mirror of
https://gitlab.freedesktop.org/cairo/cairo.git
synced 2025-12-20 10:30:08 +01:00
To avoid reading a potentially garbage alpha channel when users of pdiff_compare pass in RGB24 images, if the format is RGB24, force the alpha channel to be 0xff. This commit also updates CI to adjust for the new tests that have started/stopped failing. New failures often are cases where the reference image has alpha transparency, but the test output does not; new passing tests may indicate that the unused alpha channel of an RGB24 image was garbage, but now is ignored.
426 lines
11 KiB
C
426 lines
11 KiB
C
/*
|
|
Metric
|
|
Copyright (C) 2006 Yangli Hector Yee
|
|
|
|
This program is free software; you can redistribute it and/or modify it under the terms of the
|
|
GNU General Public License as published by the Free Software Foundation; either version 2 of the License,
|
|
or (at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
|
|
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
|
|
See the GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License along with this program;
|
|
if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Suite 500, Boston, MA 02110-1335, USA
|
|
*/
|
|
|
|
#include "config.h"
|
|
|
|
#include "lpyramid.h"
|
|
#include <assert.h>
|
|
#include <math.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
|
|
#if HAVE_STDINT_H
|
|
# include <stdint.h>
|
|
#elif HAVE_INTTYPES_H
|
|
# include <inttypes.h>
|
|
#elif HAVE_SYS_INT_TYPES_H
|
|
# include <sys/int_types.h>
|
|
#elif defined(_MSC_VER)
|
|
typedef __int8 int8_t;
|
|
typedef unsigned __int8 uint8_t;
|
|
typedef __int16 int16_t;
|
|
typedef unsigned __int16 uint16_t;
|
|
typedef __int32 int32_t;
|
|
typedef unsigned __int32 uint32_t;
|
|
typedef __int64 int64_t;
|
|
typedef unsigned __int64 uint64_t;
|
|
# ifndef HAVE_UINT64_T
|
|
# define HAVE_UINT64_T 1
|
|
# endif
|
|
# ifndef INT16_MIN
|
|
# define INT16_MIN (-32767-1)
|
|
# endif
|
|
# ifndef INT16_MAX
|
|
# define INT16_MAX (32767)
|
|
# endif
|
|
# ifndef UINT16_MAX
|
|
# define UINT16_MAX (65535)
|
|
# endif
|
|
#else
|
|
#error Cannot find definitions for fixed-width integral types (uint8_t, uint32_t, etc.)
|
|
#endif
|
|
|
|
#include "pdiff.h"
|
|
|
|
#ifndef M_PI
|
|
#define M_PI 3.14159265f
|
|
#endif
|
|
|
|
#ifndef __USE_ISOC99
|
|
#define expf exp
|
|
#define powf pow
|
|
#define fabsf fabs
|
|
#define sqrtf sqrt
|
|
#define log10f log10
|
|
#endif
|
|
|
|
/*
|
|
* Given the adaptation luminance, this function returns the
|
|
* threshold of visibility in cd per m^2
|
|
* TVI means Threshold vs Intensity function
|
|
* This version comes from Ward Larson Siggraph 1997
|
|
*/
|
|
static float
|
|
tvi (float adaptation_luminance)
|
|
{
|
|
/* returns the threshold luminance given the adaptation luminance
|
|
units are candelas per meter squared
|
|
*/
|
|
float log_a, r, result;
|
|
log_a = log10f(adaptation_luminance);
|
|
|
|
if (log_a < -3.94f) {
|
|
r = -2.86f;
|
|
} else if (log_a < -1.44f) {
|
|
r = powf(0.405f * log_a + 1.6f , 2.18f) - 2.86f;
|
|
} else if (log_a < -0.0184f) {
|
|
r = log_a - 0.395f;
|
|
} else if (log_a < 1.9f) {
|
|
r = powf(0.249f * log_a + 0.65f, 2.7f) - 0.72f;
|
|
} else {
|
|
r = log_a - 1.255f;
|
|
}
|
|
|
|
result = powf(10.0f , r);
|
|
|
|
return result;
|
|
}
|
|
|
|
/* computes the contrast sensitivity function (Barten SPIE 1989)
|
|
* given the cycles per degree (cpd) and luminance (lum)
|
|
*/
|
|
static float
|
|
csf (float cpd, float lum)
|
|
{
|
|
float a, b, result;
|
|
|
|
a = 440.0f * powf((1.0f + 0.7f / lum), -0.2f);
|
|
b = 0.3f * powf((1.0f + 100.0f / lum), 0.15f);
|
|
|
|
result = a * cpd * expf(-b * cpd) * sqrtf(1.0f + 0.06f * expf(b * cpd));
|
|
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* Visual Masking Function
|
|
* from Daly 1993
|
|
*/
|
|
static float
|
|
mask (float contrast)
|
|
{
|
|
float a, b, result;
|
|
a = powf(392.498f * contrast, 0.7f);
|
|
b = powf(0.0153f * a, 4.0f);
|
|
result = powf(1.0f + b, 0.25f);
|
|
|
|
return result;
|
|
}
|
|
|
|
/* convert Adobe RGB (1998) with reference white D65 to XYZ */
|
|
static void
|
|
AdobeRGBToXYZ (float r, float g, float b, float *x, float *y, float *z)
|
|
{
|
|
/* matrix is from http://www.brucelindbloom.com/ */
|
|
*x = r * 0.576700f + g * 0.185556f + b * 0.188212f;
|
|
*y = r * 0.297361f + g * 0.627355f + b * 0.0752847f;
|
|
*z = r * 0.0270328f + g * 0.0706879f + b * 0.991248f;
|
|
}
|
|
|
|
static void
|
|
XYZToLAB (float x, float y, float z, float *L, float *A, float *B)
|
|
{
|
|
static float xw = -1;
|
|
static float yw;
|
|
static float zw;
|
|
const float epsilon = 216.0f / 24389.0f;
|
|
const float kappa = 24389.0f / 27.0f;
|
|
float f[3];
|
|
float r[3];
|
|
int i;
|
|
|
|
/* reference white */
|
|
if (xw < 0) {
|
|
AdobeRGBToXYZ(1, 1, 1, &xw, &yw, &zw);
|
|
}
|
|
r[0] = x / xw;
|
|
r[1] = y / yw;
|
|
r[2] = z / zw;
|
|
for (i = 0; i < 3; i++) {
|
|
if (r[i] > epsilon) {
|
|
f[i] = powf(r[i], 1.0f / 3.0f);
|
|
} else {
|
|
f[i] = (kappa * r[i] + 16.0f) / 116.0f;
|
|
}
|
|
}
|
|
*L = 116.0f * f[1] - 16.0f;
|
|
*A = 500.0f * (f[0] - f[1]);
|
|
*B = 200.0f * (f[1] - f[2]);
|
|
}
|
|
|
|
static uint32_t
|
|
_get_pixel (const uint32_t *data, int i, cairo_format_t format)
|
|
{
|
|
if (format == CAIRO_FORMAT_ARGB32)
|
|
return data[i];
|
|
else
|
|
return data[i] | 0xff000000;
|
|
}
|
|
|
|
static unsigned char
|
|
_get_red (const uint32_t *data, int i, cairo_format_t format)
|
|
{
|
|
uint32_t pixel;
|
|
uint8_t alpha;
|
|
|
|
pixel = _get_pixel (data, i, format);
|
|
alpha = (pixel & 0xff000000) >> 24;
|
|
if (alpha == 0)
|
|
return 0;
|
|
else
|
|
return (((pixel & 0x00ff0000) >> 16) * 255 + alpha / 2) / alpha;
|
|
}
|
|
|
|
static unsigned char
|
|
_get_green (const uint32_t *data, int i, cairo_format_t format)
|
|
{
|
|
uint32_t pixel;
|
|
uint8_t alpha;
|
|
|
|
pixel = _get_pixel (data, i, format);
|
|
alpha = (pixel & 0xff000000) >> 24;
|
|
if (alpha == 0)
|
|
return 0;
|
|
else
|
|
return (((pixel & 0x0000ff00) >> 8) * 255 + alpha / 2) / alpha;
|
|
}
|
|
|
|
static unsigned char
|
|
_get_blue (const uint32_t *data, int i, cairo_format_t format)
|
|
{
|
|
uint32_t pixel;
|
|
uint8_t alpha;
|
|
|
|
pixel = _get_pixel (data, i, format);
|
|
alpha = (pixel & 0xff000000) >> 24;
|
|
if (alpha == 0)
|
|
return 0;
|
|
else
|
|
return (((pixel & 0x000000ff) >> 0) * 255 + alpha / 2) / alpha;
|
|
}
|
|
|
|
static void *
|
|
xmalloc (size_t size)
|
|
{
|
|
void *buf;
|
|
|
|
buf = malloc (size);
|
|
if (buf == NULL) {
|
|
fprintf (stderr, "Out of memory.\n");
|
|
exit (1);
|
|
}
|
|
|
|
return buf;
|
|
}
|
|
|
|
int
|
|
pdiff_compare (cairo_surface_t *surface_a,
|
|
cairo_surface_t *surface_b,
|
|
double gamma,
|
|
double luminance,
|
|
double field_of_view)
|
|
{
|
|
unsigned int dim = (cairo_image_surface_get_width (surface_a)
|
|
* cairo_image_surface_get_height (surface_a));
|
|
unsigned int i;
|
|
|
|
/* assuming colorspaces are in Adobe RGB (1998) convert to XYZ */
|
|
float *aX;
|
|
float *aY;
|
|
float *aZ;
|
|
float *bX;
|
|
float *bY;
|
|
float *bZ;
|
|
float *aLum;
|
|
float *bLum;
|
|
|
|
float *aA;
|
|
float *bA;
|
|
float *aB;
|
|
float *bB;
|
|
|
|
unsigned int x, y, w, h;
|
|
|
|
lpyramid_t *la, *lb;
|
|
|
|
float num_one_degree_pixels, pixels_per_degree, num_pixels;
|
|
unsigned int adaptation_level;
|
|
|
|
float cpd[MAX_PYR_LEVELS];
|
|
float F_freq[MAX_PYR_LEVELS - 2];
|
|
float csf_max;
|
|
const uint32_t *data_a, *data_b;
|
|
cairo_format_t format_a, format_b;
|
|
|
|
unsigned int pixels_failed;
|
|
|
|
w = cairo_image_surface_get_width (surface_a);
|
|
h = cairo_image_surface_get_height (surface_a);
|
|
if (w < 3 || h < 3) /* too small for the Laplacian convolution */
|
|
return -1;
|
|
|
|
format_a = cairo_image_surface_get_format (surface_a);
|
|
format_b = cairo_image_surface_get_format (surface_b);
|
|
assert (format_a == CAIRO_FORMAT_RGB24 || format_a == CAIRO_FORMAT_ARGB32);
|
|
assert (format_b == CAIRO_FORMAT_RGB24 || format_b == CAIRO_FORMAT_ARGB32);
|
|
|
|
aX = xmalloc (dim * sizeof (float));
|
|
aY = xmalloc (dim * sizeof (float));
|
|
aZ = xmalloc (dim * sizeof (float));
|
|
bX = xmalloc (dim * sizeof (float));
|
|
bY = xmalloc (dim * sizeof (float));
|
|
bZ = xmalloc (dim * sizeof (float));
|
|
aLum = xmalloc (dim * sizeof (float));
|
|
bLum = xmalloc (dim * sizeof (float));
|
|
|
|
aA = xmalloc (dim * sizeof (float));
|
|
bA = xmalloc (dim * sizeof (float));
|
|
aB = xmalloc (dim * sizeof (float));
|
|
bB = xmalloc (dim * sizeof (float));
|
|
|
|
data_a = (uint32_t *) cairo_image_surface_get_data (surface_a);
|
|
data_b = (uint32_t *) cairo_image_surface_get_data (surface_b);
|
|
for (y = 0; y < h; y++) {
|
|
for (x = 0; x < w; x++) {
|
|
float r, g, b, l;
|
|
i = x + y * w;
|
|
r = powf(_get_red (data_a, i, format_a) / 255.0f, gamma);
|
|
g = powf(_get_green (data_a, i, format_a) / 255.0f, gamma);
|
|
b = powf(_get_blue (data_a, i, format_a) / 255.0f, gamma);
|
|
|
|
AdobeRGBToXYZ(r,g,b,&aX[i],&aY[i],&aZ[i]);
|
|
XYZToLAB(aX[i], aY[i], aZ[i], &l, &aA[i], &aB[i]);
|
|
r = powf(_get_red (data_b, i, format_b) / 255.0f, gamma);
|
|
g = powf(_get_green (data_b, i, format_b) / 255.0f, gamma);
|
|
b = powf(_get_blue (data_b, i, format_b) / 255.0f, gamma);
|
|
|
|
AdobeRGBToXYZ(r,g,b,&bX[i],&bY[i],&bZ[i]);
|
|
XYZToLAB(bX[i], bY[i], bZ[i], &l, &bA[i], &bB[i]);
|
|
aLum[i] = aY[i] * luminance;
|
|
bLum[i] = bY[i] * luminance;
|
|
}
|
|
}
|
|
|
|
la = lpyramid_create (aLum, w, h);
|
|
lb = lpyramid_create (bLum, w, h);
|
|
|
|
num_one_degree_pixels = (float) (2 * tan(field_of_view * 0.5 * M_PI / 180) * 180 / M_PI);
|
|
pixels_per_degree = w / num_one_degree_pixels;
|
|
|
|
num_pixels = 1;
|
|
adaptation_level = 0;
|
|
for (i = 0; i < MAX_PYR_LEVELS; i++) {
|
|
adaptation_level = i;
|
|
if (num_pixels > num_one_degree_pixels) break;
|
|
num_pixels *= 2;
|
|
}
|
|
|
|
cpd[0] = 0.5f * pixels_per_degree;
|
|
for (i = 1; i < MAX_PYR_LEVELS; i++) cpd[i] = 0.5f * cpd[i - 1];
|
|
csf_max = csf(3.248f, 100.0f);
|
|
|
|
for (i = 0; i < MAX_PYR_LEVELS - 2; i++) F_freq[i] = csf_max / csf( cpd[i], 100.0f);
|
|
|
|
pixels_failed = 0;
|
|
for (y = 0; y < h; y++) {
|
|
for (x = 0; x < w; x++) {
|
|
int index = x + y * w;
|
|
float contrast[MAX_PYR_LEVELS - 2];
|
|
float F_mask[MAX_PYR_LEVELS - 2];
|
|
float factor;
|
|
float delta;
|
|
float adapt;
|
|
bool pass;
|
|
float sum_contrast = 0;
|
|
for (i = 0; i < MAX_PYR_LEVELS - 2; i++) {
|
|
float n1 = fabsf(lpyramid_get_value (la,x,y,i) - lpyramid_get_value (la,x,y,i + 1));
|
|
float n2 = fabsf(lpyramid_get_value (lb,x,y,i) - lpyramid_get_value (lb,x,y,i + 1));
|
|
float numerator = (n1 > n2) ? n1 : n2;
|
|
float d1 = fabsf(lpyramid_get_value(la,x,y,i+2));
|
|
float d2 = fabsf(lpyramid_get_value(lb,x,y,i+2));
|
|
float denominator = (d1 > d2) ? d1 : d2;
|
|
if (denominator < 1e-5f) denominator = 1e-5f;
|
|
contrast[i] = numerator / denominator;
|
|
sum_contrast += contrast[i];
|
|
}
|
|
if (sum_contrast < 1e-5) sum_contrast = 1e-5f;
|
|
adapt = lpyramid_get_value(la,x,y,adaptation_level) + lpyramid_get_value(lb,x,y,adaptation_level);
|
|
adapt *= 0.5f;
|
|
if (adapt < 1e-5) adapt = 1e-5f;
|
|
for (i = 0; i < MAX_PYR_LEVELS - 2; i++) {
|
|
F_mask[i] = mask(contrast[i] * csf(cpd[i], adapt));
|
|
}
|
|
factor = 0;
|
|
for (i = 0; i < MAX_PYR_LEVELS - 2; i++) {
|
|
factor += contrast[i] * F_freq[i] * F_mask[i] / sum_contrast;
|
|
}
|
|
if (factor < 1) factor = 1;
|
|
if (factor > 10) factor = 10;
|
|
delta = fabsf(lpyramid_get_value(la,x,y,0) - lpyramid_get_value(lb,x,y,0));
|
|
pass = true;
|
|
/* pure luminance test */
|
|
if (delta > factor * tvi(adapt)) {
|
|
pass = false;
|
|
} else {
|
|
/* CIE delta E test with modifications */
|
|
float color_scale = 1.0f;
|
|
float da = aA[index] - bA[index];
|
|
float db = aB[index] - bB[index];
|
|
float delta_e;
|
|
/* ramp down the color test in scotopic regions */
|
|
if (adapt < 10.0f) {
|
|
color_scale = 1.0f - (10.0f - color_scale) / 10.0f;
|
|
color_scale = color_scale * color_scale;
|
|
}
|
|
da = da * da;
|
|
db = db * db;
|
|
delta_e = (da + db) * color_scale;
|
|
if (delta_e > factor) {
|
|
pass = false;
|
|
}
|
|
}
|
|
if (!pass)
|
|
pixels_failed++;
|
|
}
|
|
}
|
|
|
|
free (aX);
|
|
free (aY);
|
|
free (aZ);
|
|
free (bX);
|
|
free (bY);
|
|
free (bZ);
|
|
free (aLum);
|
|
free (bLum);
|
|
lpyramid_destroy (la);
|
|
lpyramid_destroy (lb);
|
|
free (aA);
|
|
free (bA);
|
|
free (aB);
|
|
free (bB);
|
|
|
|
return pixels_failed;
|
|
}
|