cairo/src/cairo.c
Carl Worth fd8a70f4b6 Add missing notes on soname and user-space locking for cairo_set_source() to the 0.9.0 release notes.
Document cairo_pattern_add_color_stop_rgb, cairo_pattern_add_color_stop_rgba, cairo_pattern_set_matrix, and cairo_pattern_get_matrix.
Add note on user-space locking to the documentation for cairo_set_source().
2005-08-13 04:17:36 +00:00

2498 lines
64 KiB
C

/* cairo - a vector graphics library with display and print output
*
* Copyright © 2002 University of Southern California
* Copyright © 2005 Red Hat, Inc.
*
* This library is free software; you can redistribute it and/or
* modify it either under the terms of the GNU Lesser General Public
* License version 2.1 as published by the Free Software Foundation
* (the "LGPL") or, at your option, under the terms of the Mozilla
* Public License Version 1.1 (the "MPL"). If you do not alter this
* notice, a recipient may use your version of this file under either
* the MPL or the LGPL.
*
* You should have received a copy of the LGPL along with this library
* in the file COPYING-LGPL-2.1; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
* You should have received a copy of the MPL along with this library
* in the file COPYING-MPL-1.1
*
* The contents of this file are subject to the Mozilla Public License
* Version 1.1 (the "License"); you may not use this file except in
* compliance with the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
* OF ANY KIND, either express or implied. See the LGPL or the MPL for
* the specific language governing rights and limitations.
*
* The Original Code is the cairo graphics library.
*
* The Initial Developer of the Original Code is University of Southern
* California.
*
* Contributor(s):
* Carl D. Worth <cworth@cworth.org>
*/
#include "cairoint.h"
#include "cairo-private.h"
#include "cairo-arc-private.h"
#include "cairo-path-data-private.h"
#define CAIRO_TOLERANCE_MINIMUM 0.0002 /* We're limited by 16 bits of sub-pixel precision */
static const cairo_t cairo_nil = {
(unsigned int)-1, /* ref_count */
CAIRO_STATUS_NO_MEMORY, /* status */
{ /* path */
NULL, NULL, /* op_buf_head, op_buf_tail */
NULL, NULL, /* arg_buf_head, arg_buf_tail */
{ 0, 0 }, /* last_move_point */
{ 0, 0 }, /* current point */
FALSE, /* has_current_point */
},
NULL /* gstate */
};
#include <assert.h>
/* This has to be updated whenever cairo_status_t is extended. That's
* a bit of a pain, but it should be easy to always catch as long as
* one adds a new test case to test a trigger of the new status value.
*/
#define CAIRO_STATUS_LAST_STATUS CAIRO_STATUS_FILE_NOT_FOUND
/**
* _cairo_error:
* @status: a status value indicating an error, (eg. not
* CAIRO_STATUS_SUCCESS)
*
* Checks that status is an error status, but does nothing else.
*
* All assignments of an error status to any user-visible object
* within the cairo application should result in a call to
* _cairo_error().
*
* The purpose of this function is to allow the user to set a
* breakpoint in _cairo_error() to generate a stack trace for when the
* user causes cairo to detect an error.
**/
void
_cairo_error (cairo_status_t status)
{
assert (status > CAIRO_STATUS_SUCCESS &&
status <= CAIRO_STATUS_LAST_STATUS);
}
/**
* _cairo_set_error:
* @cr: a cairo context
* @status: a status value indicating an error, (eg. not
* CAIRO_STATUS_SUCCESS)
*
* Sets cr->status to @status and calls _cairo_error;
*
* All assignments of an error status to cr->status should happen
* through _cairo_set_error() or else _cairo_error() should be
* called immediately after the assignment.
*
* The purpose of this function is to allow the user to set a
* breakpoint in _cairo_error() to generate a stack trace for when the
* user causes cairo to detect an error.
**/
static void
_cairo_set_error (cairo_t *cr, cairo_status_t status)
{
cr->status = status;
_cairo_error (status);
}
/**
* cairo_version:
*
* Returns the version of the cairo library encoded in a single
* integer as per CAIRO_VERSION_ENCODE. The encoding ensures that
* later versions compare greater than earlier versions.
*
* A run-time comparison to check that cairo's version is greater than
* or equal to version X.Y.Z could be performed as follows:
*
* <informalexample><programlisting>
* if (cairo_version() >= CAIRO_VERSION_ENCODE(X,Y,Z)) {...}
* </programlisting></informalexample>
*
* See also cairo_version_string() as well as the compile-time
* equivalents %CAIRO_VERSION and %CAIRO_VERSION_STRING.
*
* Return value: the encoded version.
**/
int
cairo_version (void)
{
return CAIRO_VERSION;
}
/**
* cairo_version_string:
*
* Returns the version of the cairo library as a human-readable string
* of the form "X.Y.Z".
*
* See also cairo_version() as well as the compile-time equivalents
* %CAIRO_VERSION_STRING and %CAIRO_VERSION.
*
* Return value: a string containing the version.
**/
const char*
cairo_version_string (void)
{
return CAIRO_VERSION_STRING;
}
/**
* cairo_create:
* @target: target surface for the context
*
* Creates a new #cairo_t with all graphics state parameters set to
* default values and with @target as a target surface. The target
* surface should be constructed with a backend-specific function such
* as cairo_image_surface_create (or any other
* cairo_&lt;backend&gt;_surface_create variant).
*
* This function references @target, so you can immediately
* call cairo_surface_destroy() on it if you don't need to
* maintain a separate reference to it.
*
* Note that there are restrictions on using the same surface in
* multiple contexts at the same time. If, after creating @cr_a with
* @surface you also create @cr_b with the same surface, you must
* ensure that @cr_b has finished using @surface before resuming use
* of @cr_a. Currently, the only way time at which this is guaranteed
* is when the the last reference to @cr_b is released with
* cairo_destroy(). (XXX: We need to add a cairo_finish() call to
* provide a way to achieve this explicitly). See also the
* %CAIRO_STATUS_BAD_NESTING status.
*
* Return value: a newly allocated #cairo_t with a reference
* count of 1. The initial reference count should be released
* with cairo_destroy() when you are done using the #cairo_t.
* This function never returns %NULL. If memory cannot be
* allocated, a special #cairo_t object will be returned on
* which cairo_status() returns %CAIRO_STATUS_NO_MEMORY.
* You can use this object normally, but no drawing will
* be done.
**/
cairo_t *
cairo_create (cairo_surface_t *target)
{
cairo_t *cr;
cr = malloc (sizeof (cairo_t));
if (cr == NULL)
return (cairo_t *) &cairo_nil;
cr->ref_count = 1;
cr->status = CAIRO_STATUS_SUCCESS;
_cairo_path_fixed_init (&cr->path);
if (target == NULL) {
cr->gstate = NULL;
_cairo_set_error (cr, CAIRO_STATUS_NULL_POINTER);
return cr;
}
cr->gstate = _cairo_gstate_create (target);
if (cr->gstate == NULL)
_cairo_set_error (cr, CAIRO_STATUS_NO_MEMORY);
return cr;
}
/**
* cairo_reference:
* @cr: a #cairo_t
*
* Increases the reference count on @cr by one. This prevents
* @cr from being destroyed until a matching call to cairo_destroy()
* is made.
*
* Return value: the referenced #cairo_t.
**/
cairo_t *
cairo_reference (cairo_t *cr)
{
if (cr->ref_count == (unsigned int)-1)
return cr;
cr->ref_count++;
return cr;
}
/**
* cairo_destroy:
* @cr: a #cairo_t
*
* Decreases the reference count on @cr by one. If the result
* is zero, then @cr and all associated resources are freed.
* See cairo_reference().
**/
void
cairo_destroy (cairo_t *cr)
{
if (cr->ref_count == (unsigned int)-1)
return;
cr->ref_count--;
if (cr->ref_count)
return;
while (cr->gstate) {
cairo_gstate_t *tmp = cr->gstate;
cr->gstate = tmp->next;
_cairo_gstate_destroy (tmp);
}
_cairo_path_fixed_fini (&cr->path);
free (cr);
}
/**
* cairo_save:
* @cr: a #cairo_t
*
* Makes a copy of the current state of @cr and saves it
* on an internal stack of saved states for @cr. When
* cairo_restore() is called, @cr will be restored to
* the saved state. Multiple calls to cairo_save() and
* cairo_restore() can be nested; each call to cairo_restore()
* restores the state from the matching paired cairo_save().
*
* It isn't necessary to clear all saved states before
* a #cairo_t is freed. If the reference count of a #cairo_t
* drops to zero in response to a call to cairo_destroy(),
* any saved states will be freed along with the #cairo_t.
**/
void
cairo_save (cairo_t *cr)
{
cairo_gstate_t *top;
if (cr->status) {
_cairo_set_error (cr, cr->status);
return;
}
top = _cairo_gstate_clone (cr->gstate);
if (top == NULL) {
_cairo_set_error (cr, CAIRO_STATUS_NO_MEMORY);
return;
}
top->next = cr->gstate;
cr->gstate = top;
}
slim_hidden_def(cairo_save);
/**
* cairo_restore:
* @cr: a #cairo_t
*
* Restores @cr to the state saved by a preceding call to
* cairo_save() and removes that state from the stack of
* saved states.
**/
void
cairo_restore (cairo_t *cr)
{
cairo_gstate_t *top;
if (cr->status) {
_cairo_set_error (cr, cr->status);
return;
}
top = cr->gstate;
cr->gstate = top->next;
_cairo_gstate_destroy (top);
if (cr->gstate == NULL)
_cairo_set_error (cr, CAIRO_STATUS_INVALID_RESTORE);
}
slim_hidden_def(cairo_restore);
/* XXX: I want to rethink this API
void
cairo_push_group (cairo_t *cr)
{
if (cr->status)
return;
cr->status = cairoPush (cr);
if (cr->status)
return;
cr->status = _cairo_gstate_begin_group (cr->gstate);
}
void
cairo_pop_group (cairo_t *cr)
{
if (cr->status)
return;
cr->status = _cairo_gstate_end_group (cr->gstate);
if (cr->status)
return;
cr->status = cairoPop (cr);
}
*/
/**
* cairo_set_operator:
* @cr: a #cairo_t
* @op: a compositing operator, specified as a #cairo_operator_t
*
* Sets the compositing operator to be used for all drawing
* operations. See #cairo_operator_t for details on the semantics of
* each available drawing operator.
*
* XXX: I'd also like to direct the reader's attention to some
* (not-yet-written) section on cairo's imaging model. How would I do
* that if such a section existed? (cworth).
**/
void
cairo_set_operator (cairo_t *cr, cairo_operator_t op)
{
if (cr->status) {
_cairo_set_error (cr, cr->status);
return;
}
cr->status = _cairo_gstate_set_operator (cr->gstate, op);
if (cr->status)
_cairo_set_error (cr, cr->status);
}
/**
* cairo_set_source_rgb
* @cr: a cairo context
* @red: red component of color
* @green: green component of color
* @blue: blue component of color
*
* Sets the source pattern within @cr to an opaque color. This opaque
* color will then be used for any subsequent drawing operation until
* a new source pattern is set.
*
* The color components are floating point numbers in the range 0 to
* 1. If the values passed in are outside that range, they will be
* clamped.
**/
void
cairo_set_source_rgb (cairo_t *cr, double red, double green, double blue)
{
cairo_pattern_t *pattern;
if (cr->status) {
_cairo_set_error (cr, cr->status);
return;
}
pattern = cairo_pattern_create_rgb (red, green, blue);
cairo_set_source (cr, pattern);
cairo_pattern_destroy (pattern);
}
/**
* cairo_set_source_rgba:
* @cr: a cairo context
* @red: red component of color
* @green: green component of color
* @blue: blue component of color
* @alpha: alpha component of color
*
* Sets the source pattern within @cr to a translucent color. This
* color will then be used for any subsequent drawing operation until
* a new source pattern is set.
*
* The color and alpha components are floating point numbers in the
* range 0 to 1. If the values passed in are outside that range, they
* will be clamped.
**/
void
cairo_set_source_rgba (cairo_t *cr,
double red, double green, double blue,
double alpha)
{
cairo_pattern_t *pattern;
if (cr->status) {
_cairo_set_error (cr, cr->status);
return;
}
pattern = cairo_pattern_create_rgba (red, green, blue, alpha);
cairo_set_source (cr, pattern);
cairo_pattern_destroy (pattern);
}
/**
* cairo_set_source_surface:
* @cr: a cairo context
* @surface: a surface to be used to set the source pattern
* @x: User-space X coordinate for surface origin
* @y: User-space Y coordinate for surface origin
*
* This is a convenience function for creating a pattern from @surface
* and setting it as the source in @cr with cairo_set_source().
*
* The @x and @y parameters give the user-space coordinate at which
* the surface origin should appear. (The surface origin is its
* upper-left corner before any transformation has been applied.) The
* @x and @y patterns are negated and then set as translation values
* in the pattern matrix.
*
* Other than the initial translation pattern matrix, as described
* above, all other pattern attributes, (such as its extend mode), are
* set to the default values as in cairo_pattern_create_for_surface.
* The resulting pattern can be queried with cairo_get_source() so
* that these attributes can be modified if desired, (eg. to create a
* repeating pattern with cairo_pattern_set_extend()).
**/
void
cairo_set_source_surface (cairo_t *cr,
cairo_surface_t *surface,
double x,
double y)
{
cairo_pattern_t *pattern;
cairo_matrix_t matrix;
if (cr->status) {
_cairo_set_error (cr, cr->status);
return;
}
pattern = cairo_pattern_create_for_surface (surface);
cairo_matrix_init_translate (&matrix, -x, -y);
cairo_pattern_set_matrix (pattern, &matrix);
cairo_set_source (cr, pattern);
cairo_pattern_destroy (pattern);
}
/**
* cairo_set_source
* @cr: a cairo context
* @source: a #cairo_pattern_t to be used as the source for
* subsequent drawing operations.
*
* Sets the source pattern within @cr to @source. This pattern
* will then be used for any subsequent drawing operation until a new
* source pattern is set.
*
* Note: The pattern's transformation matrix will be locked to the
* user space in effect at the time of cairo_set_source(). This means
* that further modifications of the CTM will not affect the source
* pattern. See cairo_pattern_set_matrix().
*
* XXX: I'd also like to direct the reader's attention to some
* (not-yet-written) section on cairo's imaging model. How would I do
* that if such a section existed? (cworth).
**/
void
cairo_set_source (cairo_t *cr, cairo_pattern_t *source)
{
if (cr->status) {
_cairo_set_error (cr, cr->status);
return;
}
if (source == NULL) {
_cairo_set_error (cr, CAIRO_STATUS_NULL_POINTER);
return;
}
if (source->status) {
_cairo_set_error (cr, source->status);
return;
}
cr->status = _cairo_gstate_set_source (cr->gstate, source);
if (cr->status)
_cairo_set_error (cr, cr->status);
}
/**
* cairo_get_source:
* @cr: a cairo context
*
* Gets the current source pattern for @cr.
*
* Return value: the current source pattern. This object is owned by
* cairo. To keep a reference to it, you must call
* cairo_pattern_reference().
**/
cairo_pattern_t *
cairo_get_source (cairo_t *cr)
{
if (cr->status)
return (cairo_pattern_t*) &cairo_solid_pattern_nil.base;
return _cairo_gstate_get_source (cr->gstate);
}
/**
* cairo_set_tolerance:
* @cr: a #cairo_t
* @tolerance: the tolerance, in device units (typically pixels)
*
* Sets the tolerance used when converting paths into trapezoids.
* Curved segments of the path will be subdivided until the maximum
* deviation between the original path and the polygonal approximation
* is less than @tolerance. The default value is 0.1. A larger
* value will give better performance, a smaller value, better
* appearance. (Reducing the value from the default value of 0.1
* is unlikely to improve appearance significantly.)
**/
void
cairo_set_tolerance (cairo_t *cr, double tolerance)
{
if (cr->status) {
_cairo_set_error (cr, cr->status);
return;
}
_cairo_restrict_value (&tolerance, CAIRO_TOLERANCE_MINIMUM, tolerance);
cr->status = _cairo_gstate_set_tolerance (cr->gstate, tolerance);
if (cr->status)
_cairo_set_error (cr, cr->status);
}
/**
* cairo_set_antialias:
* @cr: a #cairo_t
* @antialias: the new antialiasing mode
*
* Set the antialiasing mode of the rasterizer used for drawing shapes.
* This value is a hint, and a particular backend may or may not support
* a particular value. At the current time, no backend supports
* %CAIRO_ANTIALIAS_SUBPIXEL when drawing shapes.
*
* Note that this option does not affect text rendering, instead see
* cairo_font_options_set_antialias().
**/
void
cairo_set_antialias (cairo_t *cr, cairo_antialias_t antialias)
{
if (cr->status) {
_cairo_set_error (cr, cr->status);
return;
}
cr->status = _cairo_gstate_set_antialias (cr->gstate, antialias);
if (cr->status)
_cairo_set_error (cr, cr->status);
}
/**
* cairo_set_fill_rule:
* @cr: a #cairo_t
* @fill_rule: a fill rule, specified as a #cairo_fill_rule_t
*
* Set the current fill rule within the cairo context. The fill rule
* is used to determine which regions are inside or outside a complex
* (potentially self-intersecting) path. The current fill rule affects
* both cairo_fill and cairo_clip. See #cairo_fill_rule_t for details
* on the semantics of each available fill rule.
**/
void
cairo_set_fill_rule (cairo_t *cr, cairo_fill_rule_t fill_rule)
{
if (cr->status) {
_cairo_set_error (cr, cr->status);
return;
}
cr->status = _cairo_gstate_set_fill_rule (cr->gstate, fill_rule);
if (cr->status)
_cairo_set_error (cr, cr->status);
}
/**
* cairo_set_line_width:
* @cr: a #cairo_t
* @width: a line width, as a user-space value
*
* Sets the current line width within the cairo context. The line
* width specifies the diameter of a pen that is circular in
* user-space.
*
* As with the other stroke parameters, the current line cap style is
* examined by cairo_stroke(), cairo_stroke_extents(), and
* cairo_stroke_to_path(), but does not have any effect during path
* construction.
**/
void
cairo_set_line_width (cairo_t *cr, double width)
{
if (cr->status) {
_cairo_set_error (cr, cr->status);
return;
}
_cairo_restrict_value (&width, 0.0, width);
cr->status = _cairo_gstate_set_line_width (cr->gstate, width);
if (cr->status)
_cairo_set_error (cr, cr->status);
}
/**
* cairo_set_line_cap:
* @cr: a cairo context, as a #cairo_t
* @line_cap: a line cap style, as a #cairo_line_cap_t
*
* Sets the current line cap style within the cairo context. See
* #cairo_line_cap_t for details about how the available line cap
* styles are drawn.
*
* As with the other stroke parameters, the current line cap style is
* examined by cairo_stroke(), cairo_stroke_extents(), and
* cairo_stroke_to_path(), but does not have any effect during path
* construction.
**/
void
cairo_set_line_cap (cairo_t *cr, cairo_line_cap_t line_cap)
{
if (cr->status) {
_cairo_set_error (cr, cr->status);
return;
}
cr->status = _cairo_gstate_set_line_cap (cr->gstate, line_cap);
if (cr->status)
_cairo_set_error (cr, cr->status);
}
/**
* cairo_set_line_join:
* @cr: a cairo context, as a #cairo_t
* @line_join: a line joint style, as a #cairo_line_join_t
*
* Sets the current line join style within the cairo context. See
* #cairo_line_join_t for details about how the available line join
* styles are drawn.
*
* As with the other stroke parameters, the current line join style is
* examined by cairo_stroke(), cairo_stroke_extents(), and
* cairo_stroke_to_path(), but does not have any effect during path
* construction.
**/
void
cairo_set_line_join (cairo_t *cr, cairo_line_join_t line_join)
{
if (cr->status) {
_cairo_set_error (cr, cr->status);
return;
}
cr->status = _cairo_gstate_set_line_join (cr->gstate, line_join);
if (cr->status)
_cairo_set_error (cr, cr->status);
}
void
cairo_set_dash (cairo_t *cr, double *dashes, int ndash, double offset)
{
if (cr->status) {
_cairo_set_error (cr, cr->status);
return;
}
cr->status = _cairo_gstate_set_dash (cr->gstate, dashes, ndash, offset);
if (cr->status)
_cairo_set_error (cr, cr->status);
}
void
cairo_set_miter_limit (cairo_t *cr, double limit)
{
if (cr->status) {
_cairo_set_error (cr, cr->status);
return;
}
cr->status = _cairo_gstate_set_miter_limit (cr->gstate, limit);
if (cr->status)
_cairo_set_error (cr, cr->status);
}
/**
* cairo_translate:
* @cr: a cairo context
* @tx: amount to translate in the X direction
* @ty: amount to translate in the Y direction
*
* Modifies the current transformation matrix (CTM) by translating the
* user-space origin by (@tx, @ty). This offset is interpreted as a
* user-space coordinate according to the CTM in place before the new
* call to cairo_translate. In other words, the translation of the
* user-space origin takes place after any existing transformation.
**/
void
cairo_translate (cairo_t *cr, double tx, double ty)
{
if (cr->status) {
_cairo_set_error (cr, cr->status);
return;
}
cr->status = _cairo_gstate_translate (cr->gstate, tx, ty);
if (cr->status)
_cairo_set_error (cr, cr->status);
}
/**
* cairo_scale:
* @cr: a cairo context
* @sx: scale factor for the X dimension
* @sy: scale factor for the Y dimension
*
* Modifies the current transformation matrix (CTM) by scaling the X
* and Y user-space axes by @sx and @sy respectively. The scaling of
* the axes takes place after any existing transformation of user
* space.
**/
void
cairo_scale (cairo_t *cr, double sx, double sy)
{
if (cr->status) {
_cairo_set_error (cr, cr->status);
return;
}
cr->status = _cairo_gstate_scale (cr->gstate, sx, sy);
if (cr->status)
_cairo_set_error (cr, cr->status);
}
/**
* cairo_rotate:
* @cr: a cairo context
* @angle: angle (in radians) by which the user-space axes will be
* rotated
*
* Modifies the current transformation matrix (CTM) by rotating the
* user-space axes by @angle radians. The rotation of the axes takes
* places after any existing transformation of user space. The
* rotation direction for positive angles is from the positive X axis
* toward the positive Y axis.
**/
void
cairo_rotate (cairo_t *cr, double angle)
{
if (cr->status) {
_cairo_set_error (cr, cr->status);
return;
}
cr->status = _cairo_gstate_rotate (cr->gstate, angle);
if (cr->status)
_cairo_set_error (cr, cr->status);
}
/**
* cairo_transform:
* @cr: a cairo context
* @matrix: a transformation to be applied to the user-space axes
*
* Modifies the current transformation matrix (CTM) by applying
* @matrix as an additional transformation. The new transformation of
* user space takes place after any existing transformation.
**/
void
cairo_transform (cairo_t *cr,
const cairo_matrix_t *matrix)
{
if (cr->status) {
_cairo_set_error (cr, cr->status);
return;
}
cr->status = _cairo_gstate_transform (cr->gstate, matrix);
if (cr->status)
_cairo_set_error (cr, cr->status);
}
/**
* cairo_set_matrix:
* @cr: a cairo context
* @matrix: a transformation matrix from user space to device space
*
* Modifies the current transformation matrix (CTM) by setting it
* equal to @matrix.
**/
void
cairo_set_matrix (cairo_t *cr,
const cairo_matrix_t *matrix)
{
if (cr->status) {
_cairo_set_error (cr, cr->status);
return;
}
cr->status = _cairo_gstate_set_matrix (cr->gstate, matrix);
if (cr->status)
_cairo_set_error (cr, cr->status);
}
/**
* cairo_identity_matrix:
* @cr: a cairo context
*
* Resets the current transformation matrix (CTM) by setting it equal
* to the identity matrix. That is, the user-space and device-space
* axes will be aligned and one user-space unit will transform to one
* device-space unit.
**/
void
cairo_identity_matrix (cairo_t *cr)
{
if (cr->status) {
_cairo_set_error (cr, cr->status);
return;
}
cr->status = _cairo_gstate_identity_matrix (cr->gstate);
if (cr->status)
_cairo_set_error (cr, cr->status);
}
/**
* cairo_user_to_device:
* @cr: a cairo context
* @x: X value of coordinate (in/out parameter)
* @y: Y value of coordinate (in/out parameter)
*
* Transform a coordinate from user space to device space by
* multiplying the given point by the current transformation matrix
* (CTM).
**/
void
cairo_user_to_device (cairo_t *cr, double *x, double *y)
{
if (cr->status) {
_cairo_set_error (cr, cr->status);
return;
}
cr->status = _cairo_gstate_user_to_device (cr->gstate, x, y);
if (cr->status)
_cairo_set_error (cr, cr->status);
}
/**
* cairo_user_to_device_distance:
* @cr: a cairo context
* @dx: X component of a distance vector (in/out parameter)
* @dy: Y component of a distance vector (in/out parameter)
*
* Transform a distance vector from user space to device space. This
* function is similar to cairo_user_to_device() except that the
* translation components of the CTM will be ignored when transforming
* (@dx,@dy).
**/
void
cairo_user_to_device_distance (cairo_t *cr, double *dx, double *dy)
{
if (cr->status) {
_cairo_set_error (cr, cr->status);
return;
}
cr->status = _cairo_gstate_user_to_device_distance (cr->gstate, dx, dy);
if (cr->status)
_cairo_set_error (cr, cr->status);
}
/**
* cairo_device_to_user:
* @cr: a cairo
* @x: X value of coordinate (in/out parameter)
* @y: Y value of coordinate (in/out parameter)
*
* Transform a coordinate from device space to user space by
* multiplying the given point by the inverse of the current
* transformation matrix (CTM).
**/
void
cairo_device_to_user (cairo_t *cr, double *x, double *y)
{
if (cr->status) {
_cairo_set_error (cr, cr->status);
return;
}
cr->status = _cairo_gstate_device_to_user (cr->gstate, x, y);
if (cr->status)
_cairo_set_error (cr, cr->status);
}
/**
* cairo_device_to_user_distance:
* @cr: a cairo context
* @dx: X component of a distance vector (in/out parameter)
* @dy: Y component of a distance vector (in/out parameter)
*
* Transform a distance vector from device space to user space. This
* function is similar to cairo_device_to_user() except that the
* translation components of the inverse CTM will be ignored when
* transforming (@dx,@dy).
**/
void
cairo_device_to_user_distance (cairo_t *cr, double *dx, double *dy)
{
if (cr->status) {
_cairo_set_error (cr, cr->status);
return;
}
cr->status = _cairo_gstate_device_to_user_distance (cr->gstate, dx, dy);
if (cr->status)
_cairo_set_error (cr, cr->status);
}
void
cairo_new_path (cairo_t *cr)
{
if (cr->status) {
_cairo_set_error (cr, cr->status);
return;
}
_cairo_path_fixed_fini (&cr->path);
}
slim_hidden_def(cairo_new_path);
void
cairo_move_to (cairo_t *cr, double x, double y)
{
cairo_fixed_t x_fixed, y_fixed;
if (cr->status) {
_cairo_set_error (cr, cr->status);
return;
}
_cairo_gstate_user_to_backend (cr->gstate, &x, &y);
x_fixed = _cairo_fixed_from_double (x);
y_fixed = _cairo_fixed_from_double (y);
cr->status = _cairo_path_fixed_move_to (&cr->path, x_fixed, y_fixed);
if (cr->status)
_cairo_set_error (cr, cr->status);
}
slim_hidden_def(cairo_move_to);
void
cairo_line_to (cairo_t *cr, double x, double y)
{
cairo_fixed_t x_fixed, y_fixed;
if (cr->status) {
_cairo_set_error (cr, cr->status);
return;
}
_cairo_gstate_user_to_backend (cr->gstate, &x, &y);
x_fixed = _cairo_fixed_from_double (x);
y_fixed = _cairo_fixed_from_double (y);
cr->status = _cairo_path_fixed_line_to (&cr->path, x_fixed, y_fixed);
if (cr->status)
_cairo_set_error (cr, cr->status);
}
void
cairo_curve_to (cairo_t *cr,
double x1, double y1,
double x2, double y2,
double x3, double y3)
{
cairo_fixed_t x1_fixed, y1_fixed;
cairo_fixed_t x2_fixed, y2_fixed;
cairo_fixed_t x3_fixed, y3_fixed;
if (cr->status) {
_cairo_set_error (cr, cr->status);
return;
}
_cairo_gstate_user_to_backend (cr->gstate, &x1, &y1);
_cairo_gstate_user_to_backend (cr->gstate, &x2, &y2);
_cairo_gstate_user_to_backend (cr->gstate, &x3, &y3);
x1_fixed = _cairo_fixed_from_double (x1);
y1_fixed = _cairo_fixed_from_double (y1);
x2_fixed = _cairo_fixed_from_double (x2);
y2_fixed = _cairo_fixed_from_double (y2);
x3_fixed = _cairo_fixed_from_double (x3);
y3_fixed = _cairo_fixed_from_double (y3);
cr->status = _cairo_path_fixed_curve_to (&cr->path,
x1_fixed, y1_fixed,
x2_fixed, y2_fixed,
x3_fixed, y3_fixed);
if (cr->status)
_cairo_set_error (cr, cr->status);
}
/**
* cairo_arc:
* @cr: a cairo context
* @xc: X position of the center of the arc
* @yc: Y position of the center of the arc
* @radius: the radius of the arc
* @angle1: the start angle, in radians
* @angle2: the end angle, in radians
*
* Adds an arc from @angle1 to @angle2 to the current path. If there
* is a current point, that point is connected to the start of the arc
* by a straight line segment. Angles are measured in radians with an
* angle of 0 along the X axis and an angle of %M_PI radians (90
* degrees) along the Y axis, so with the default transformation
* matrix, positive angles are clockwise. (To convert from degrees to
* radians, use <literal>degrees * (M_PI / 180.)</literal>.) This
* function gives the arc in the direction of increasing angle; see
* cairo_arc_negative() to get the arc in the direction of decreasing
* angle.
*
* A full arc is drawn as a circle. To make an oval arc, you can scale
* the current transformation matrix by different amounts in the X and
* Y directions. For example, to draw a full oval in the box given
* by @x, @y, @width, @height:
* <informalexample><programlisting>
* cairo_save (cr);
* cairo_translate (x + width / 2., y + height / 2.);
* cairo_scale (1. / (height / 2.), 1. / (width / 2.));
* cairo_arc (cr, 0., 0., 1., 0., 2 * M_PI);
* cairo_restore (cr);
* </programlisting></informalexample>
**/
void
cairo_arc (cairo_t *cr,
double xc, double yc,
double radius,
double angle1, double angle2)
{
if (cr->status) {
_cairo_set_error (cr, cr->status);
return;
}
/* Do nothing, successfully, if radius is <= 0 */
if (radius <= 0.0)
return;
while (angle2 < angle1)
angle2 += 2 * M_PI;
cairo_line_to (cr,
xc + radius * cos (angle1),
yc + radius * sin (angle1));
_cairo_arc_path (cr, xc, yc, radius,
angle1, angle2);
}
/**
* cairo_arc_negative:
* @cr: a cairo context
* @xc: X position of the center of the arc
* @yc: Y position of the center of the arc
* @radius: the radius of the arc
* @angle1: the start angle, in radians
* @angle2: the end angle, in radians
*
* Adds an arc from @angle1 to @angle2 to the current path. The
* function behaves identically to cairo_arc() except that instead of
* giving the arc in the direction of increasing angle, it gives
* the arc in the direction of decreasing angle.
**/
void
cairo_arc_negative (cairo_t *cr,
double xc, double yc,
double radius,
double angle1, double angle2)
{
if (cr->status) {
_cairo_set_error (cr, cr->status);
return;
}
/* Do nothing, successfully, if radius is <= 0 */
if (radius <= 0.0)
return;
while (angle2 > angle1)
angle2 -= 2 * M_PI;
cairo_line_to (cr,
xc + radius * cos (angle1),
yc + radius * sin (angle1));
_cairo_arc_path_negative (cr, xc, yc, radius,
angle1, angle2);
}
/* XXX: NYI
void
cairo_arc_to (cairo_t *cr,
double x1, double y1,
double x2, double y2,
double radius)
{
if (cr->status)
return;
cr->status = _cairo_gstate_arc_to (cr->gstate,
x1, y1,
x2, y2,
radius);
}
*/
void
cairo_rel_move_to (cairo_t *cr, double dx, double dy)
{
cairo_fixed_t dx_fixed, dy_fixed;
if (cr->status) {
_cairo_set_error (cr, cr->status);
return;
}
_cairo_gstate_user_to_device_distance (cr->gstate, &dx, &dy);
dx_fixed = _cairo_fixed_from_double (dx);
dy_fixed = _cairo_fixed_from_double (dy);
cr->status = _cairo_path_fixed_rel_move_to (&cr->path, dx_fixed, dy_fixed);
if (cr->status)
_cairo_set_error (cr, cr->status);
}
void
cairo_rel_line_to (cairo_t *cr, double dx, double dy)
{
cairo_fixed_t dx_fixed, dy_fixed;
if (cr->status) {
_cairo_set_error (cr, cr->status);
return;
}
_cairo_gstate_user_to_device_distance (cr->gstate, &dx, &dy);
dx_fixed = _cairo_fixed_from_double (dx);
dy_fixed = _cairo_fixed_from_double (dy);
cr->status = _cairo_path_fixed_rel_line_to (&cr->path, dx_fixed, dy_fixed);
if (cr->status)
_cairo_set_error (cr, cr->status);
}
slim_hidden_def(cairo_rel_line_to);
void
cairo_rel_curve_to (cairo_t *cr,
double dx1, double dy1,
double dx2, double dy2,
double dx3, double dy3)
{
cairo_fixed_t dx1_fixed, dy1_fixed;
cairo_fixed_t dx2_fixed, dy2_fixed;
cairo_fixed_t dx3_fixed, dy3_fixed;
if (cr->status) {
_cairo_set_error (cr, cr->status);
return;
}
_cairo_gstate_user_to_device_distance (cr->gstate, &dx1, &dy1);
_cairo_gstate_user_to_device_distance (cr->gstate, &dx2, &dy2);
_cairo_gstate_user_to_device_distance (cr->gstate, &dx3, &dy3);
dx1_fixed = _cairo_fixed_from_double (dx1);
dy1_fixed = _cairo_fixed_from_double (dy1);
dx2_fixed = _cairo_fixed_from_double (dx2);
dy2_fixed = _cairo_fixed_from_double (dy2);
dx3_fixed = _cairo_fixed_from_double (dx3);
dy3_fixed = _cairo_fixed_from_double (dy3);
cr->status = _cairo_path_fixed_rel_curve_to (&cr->path,
dx1_fixed, dy1_fixed,
dx2_fixed, dy2_fixed,
dx3_fixed, dy3_fixed);
if (cr->status)
_cairo_set_error (cr, cr->status);
}
void
cairo_rectangle (cairo_t *cr,
double x, double y,
double width, double height)
{
if (cr->status) {
_cairo_set_error (cr, cr->status);
return;
}
cairo_move_to (cr, x, y);
cairo_rel_line_to (cr, width, 0);
cairo_rel_line_to (cr, 0, height);
cairo_rel_line_to (cr, -width, 0);
cairo_close_path (cr);
}
/* XXX: NYI
void
cairo_stroke_to_path (cairo_t *cr)
{
if (cr->status)
return;
cr->status = _cairo_gstate_stroke_path (cr->gstate);
if (cr->status)
_cairo_set_error (cr, cr->status);
}
*/
void
cairo_close_path (cairo_t *cr)
{
if (cr->status) {
_cairo_set_error (cr, cr->status);
return;
}
cr->status = _cairo_path_fixed_close_path (&cr->path);
if (cr->status)
_cairo_set_error (cr, cr->status);
}
slim_hidden_def(cairo_close_path);
/**
* cairo_paint:
* @cr: a cairo context
*
* A drawing operator that paints the current source everywhere within
* the current clip region.
**/
void
cairo_paint (cairo_t *cr)
{
if (cr->status) {
_cairo_set_error (cr, cr->status);
return;
}
cr->status = _cairo_gstate_paint (cr->gstate);
if (cr->status)
_cairo_set_error (cr, cr->status);
}
/**
* cairo_paint_with_alpha:
* @cr: a cairo context
* @alpha: alpha value, between 0 (transparent) and 1 (opaque)
*
* A drawing operator that paints the current source everywhere within
* the current clip region using a mask of constant alpha value
* @alpha. The effect is similar to cairo_paint(), but the drawing
* is faded out using the alpha value.
**/
void
cairo_paint_with_alpha (cairo_t *cr,
double alpha)
{
cairo_color_t color;
cairo_pattern_union_t pattern;
if (cr->status) {
_cairo_set_error (cr, cr->status);
return;
}
if (CAIRO_ALPHA_IS_OPAQUE (alpha)) {
cairo_paint (cr);
return;
}
_cairo_color_init_rgba (&color, 1., 1., 1., alpha);
_cairo_pattern_init_solid (&pattern.solid, &color);
cr->status = _cairo_gstate_mask (cr->gstate, &pattern.base);
if (cr->status)
_cairo_set_error (cr, cr->status);
_cairo_pattern_fini (&pattern.base);
}
/**
* cairo_mask:
* @cr: a cairo context
* @pattern: a #cairo_pattern_t
*
* A drawing operator that paints the current source
* using the alpha channel of @pattern as a mask. (Opaque
* areas of @mask are painted with the source, transparent
* areas are not painted.)
*/
void
cairo_mask (cairo_t *cr,
cairo_pattern_t *pattern)
{
if (cr->status) {
_cairo_set_error (cr, cr->status);
return;
}
if (pattern == NULL) {
_cairo_set_error (cr, CAIRO_STATUS_NULL_POINTER);
return;
}
if (pattern->status) {
_cairo_set_error (cr, pattern->status);
return;
}
cr->status = _cairo_gstate_mask (cr->gstate, pattern);
if (cr->status)
_cairo_set_error (cr, cr->status);
}
/**
* cairo_mask_surface:
* @cr: a cairo context
* @surface: a #cairo_surface_t
* @surface_x: X coordinate at which to place the origin of @surface
* @surface_y: Y coordinate at which to place the origin of @surface
*
* A drawing operator that paints the current source
* using the alpha channel of @surface as a mask. (Opaque
* areas of @surface are painted with the source, transparent
* areas are not painted.)
*/
void
cairo_mask_surface (cairo_t *cr,
cairo_surface_t *surface,
double surface_x,
double surface_y)
{
cairo_pattern_t *pattern;
cairo_matrix_t matrix;
if (cr->status) {
_cairo_set_error (cr, cr->status);
return;
}
pattern = cairo_pattern_create_for_surface (surface);
cairo_matrix_init_translate (&matrix, - surface_x, - surface_y);
cairo_pattern_set_matrix (pattern, &matrix);
cairo_mask (cr, pattern);
cairo_pattern_destroy (pattern);
}
/**
* cairo_stroke:
* @cr: a cairo context
*
* A drawing operator that strokes the current path according to the
* current line width, line join, line cap, and dash settings. After
* cairo_stroke, the current path will be cleared from the cairo
* context. See cairo_set_line_width(), cairo_set_line_join(),
* cairo_set_line_cap(), cairo_set_dash(), and
* cairo_stroke_preserve().
**/
void
cairo_stroke (cairo_t *cr)
{
cairo_stroke_preserve (cr);
cairo_new_path (cr);
}
/**
* cairo_stroke_preserve:
* @cr: a cairo context
*
* A drawing operator that strokes the current path according to the
* current line width, line join, line cap, and dash settings. Unlike
* cairo_stroke(), cairo_stroke_preserve preserves the path within the
* cairo context.
*
* See cairo_set_line_width(), cairo_set_line_join(),
* cairo_set_line_cap(), cairo_set_dash(), and
* cairo_stroke_preserve().
**/
void
cairo_stroke_preserve (cairo_t *cr)
{
if (cr->status) {
_cairo_set_error (cr, cr->status);
return;
}
cr->status = _cairo_gstate_stroke (cr->gstate, &cr->path);
if (cr->status)
_cairo_set_error (cr, cr->status);
}
slim_hidden_def(cairo_stroke_preserve);
/**
* cairo_fill:
* @cr: a cairo context
*
* A drawing operator that fills the current path according to the
* current fill rule, (each sub-path is implicitly closed before being
* filled). After cairo_fill, the current path will be cleared from
* the cairo context. See cairo_set_fill_rule() and
* cairo_fill_preserve().
**/
void
cairo_fill (cairo_t *cr)
{
cairo_fill_preserve (cr);
cairo_new_path (cr);
}
/**
* cairo_fill_preserve:
* @cr: a cairo context
*
* A drawing operator that fills the current path according to the
* current fill rule, (each sub-path is implicitly closed before being
* filled). Unlike cairo_fill(), cairo_fill_preserve preserves the
* path within the cairo context.
*
* See cairo_set_fill_rule() and cairo_fill().
**/
void
cairo_fill_preserve (cairo_t *cr)
{
if (cr->status) {
_cairo_set_error (cr, cr->status);
return;
}
cr->status = _cairo_gstate_fill (cr->gstate, &cr->path);
if (cr->status)
_cairo_set_error (cr, cr->status);
}
slim_hidden_def(cairo_fill_preserve);
void
cairo_copy_page (cairo_t *cr)
{
if (cr->status) {
_cairo_set_error (cr, cr->status);
return;
}
cr->status = _cairo_gstate_copy_page (cr->gstate);
if (cr->status)
_cairo_set_error (cr, cr->status);
}
void
cairo_show_page (cairo_t *cr)
{
if (cr->status) {
_cairo_set_error (cr, cr->status);
return;
}
cr->status = _cairo_gstate_show_page (cr->gstate);
if (cr->status)
_cairo_set_error (cr, cr->status);
}
cairo_bool_t
cairo_in_stroke (cairo_t *cr, double x, double y)
{
int inside;
if (cr->status) {
_cairo_set_error (cr, cr->status);
return 0;
}
cr->status = _cairo_gstate_in_stroke (cr->gstate,
&cr->path,
x, y, &inside);
if (cr->status) {
_cairo_set_error (cr, cr->status);
return 0;
}
return inside;
}
cairo_bool_t
cairo_in_fill (cairo_t *cr, double x, double y)
{
int inside;
if (cr->status) {
_cairo_set_error (cr, cr->status);
return 0;
}
cr->status = _cairo_gstate_in_fill (cr->gstate,
&cr->path,
x, y, &inside);
if (cr->status) {
_cairo_set_error (cr, cr->status);
return 0;
}
return inside;
}
void
cairo_stroke_extents (cairo_t *cr,
double *x1, double *y1, double *x2, double *y2)
{
if (cr->status) {
_cairo_set_error (cr, cr->status);
return;
}
cr->status = _cairo_gstate_stroke_extents (cr->gstate,
&cr->path,
x1, y1, x2, y2);
if (cr->status)
_cairo_set_error (cr, cr->status);
}
void
cairo_fill_extents (cairo_t *cr,
double *x1, double *y1, double *x2, double *y2)
{
if (cr->status) {
_cairo_set_error (cr, cr->status);
return;
}
cr->status = _cairo_gstate_fill_extents (cr->gstate,
&cr->path,
x1, y1, x2, y2);
if (cr->status)
_cairo_set_error (cr, cr->status);
}
/**
* cairo_clip:
* @cr: a cairo context
*
* Establishes a new clip region by intersecting the current clip
* region with the current path as it would be filled by cairo_fill()
* and according to the current fill rule (see cairo_set_fill_rule()).
*
* After cairo_clip, the current path will be cleared from the cairo
* context.
*
* The current clip region affects all drawing operations by
* effectively masking out any changes to the surface that are outside
* the current clip region.
*
* Calling cairo_clip() can only make the clip region smaller, never
* larger. But the current clip is part of the graphics state, so a
* temporary restriction of the clip region can be achieved by
* calling cairo_clip() within a cairo_save()/cairo_restore()
* pair. The only other means of increasing the size of the clip
* region is cairo_reset_clip().
**/
void
cairo_clip (cairo_t *cr)
{
cairo_clip_preserve (cr);
cairo_new_path (cr);
}
/**
* cairo_clip_preserve:
* @cr: a cairo context
*
* Establishes a new clip region by intersecting the current clip
* region with the current path as it would be filled by cairo_fill()
* and according to the current fill rule (see cairo_set_fill_rule()).
*
* Unlike cairo_clip(), cairo_clip_preserve preserves the path within
* the cairo context.
*
* The current clip region affects all drawing operations by
* effectively masking out any changes to the surface that are outside
* the current clip region.
*
* Calling cairo_clip() can only make the clip region smaller, never
* larger. But the current clip is part of the graphics state, so a
* temporary restriction of the clip region can be achieved by
* calling cairo_clip() within a cairo_save()/cairo_restore()
* pair. The only other means of increasing the size of the clip
* region is cairo_reset_clip().
**/
void
cairo_clip_preserve (cairo_t *cr)
{
if (cr->status) {
_cairo_set_error (cr, cr->status);
return;
}
cr->status = _cairo_gstate_clip (cr->gstate, &cr->path);
if (cr->status)
_cairo_set_error (cr, cr->status);
}
slim_hidden_def(cairo_clip_preserve);
/**
* cairo_reset_clip:
* @cr: a cairo context
*
* Reset the current clip region to its original, unrestricted
* state. That is, set the clip region to an infinitely large shape
* containing the target surface. Equivalently, if infinity is too
* hard to grasp, one can imagine the clip region being reset to the
* exact bounds of the target surface.
*
* Note that code meant to be reusable should not call
* cairo_reset_clip() as it will cause results unexpected by
* higher-level code which calls cairo_clip(). Consider using
* cairo_save() and cairo_restore() around cairo_clip() as a more
* robust means of temporarily restricting the clip region.
**/
void
cairo_reset_clip (cairo_t *cr)
{
if (cr->status) {
_cairo_set_error (cr, cr->status);
return;
}
cr->status = _cairo_gstate_reset_clip (cr->gstate);
if (cr->status)
_cairo_set_error (cr, cr->status);
}
/**
* cairo_select_font_face:
* @cr: a #cairo_t
* @family: a font family name, encoded in UTF-8
* @slant: the slant for the font
* @weight: the weight for the font
*
* Selects a family and style of font from a simplified description as
* a family name, slant and weight. This function is meant to be used
* only for applications with simple font needs: Cairo doesn't provide
* for operations such as listing all available fonts on the system,
* and it is expected that most applications will need to use a more
* comprehensive font handling and text layout library in addition to
* cairo.
**/
void
cairo_select_font_face (cairo_t *cr,
const char *family,
cairo_font_slant_t slant,
cairo_font_weight_t weight)
{
if (cr->status) {
_cairo_set_error (cr, cr->status);
return;
}
cr->status = _cairo_gstate_select_font_face (cr->gstate, family, slant, weight);
if (cr->status)
_cairo_set_error (cr, cr->status);
}
/**
* cairo_get_font_face:
* @cr: a #cairo_t
*
* Gets the current font face for a #cairo_t.
*
* Return value: the current font object. Can return %NULL
* on out-of-memory or if the context is already in
* an error state. This object is owned by cairo. To keep
* a reference to it, you must call cairo_font_face_reference().
**/
cairo_font_face_t *
cairo_get_font_face (cairo_t *cr)
{
cairo_font_face_t *font_face;
if (cr->status) {
_cairo_set_error (cr, cr->status);
return (cairo_font_face_t*) &_cairo_font_face_nil;
}
cr->status = _cairo_gstate_get_font_face (cr->gstate, &font_face);
if (cr->status) {
_cairo_set_error (cr, cr->status);
return (cairo_font_face_t*) &_cairo_font_face_nil;
}
return font_face;
}
/**
* cairo_font_extents:
* @cr: a #cairo_t
* @extents: a #cairo_font_extents_t object into which the results
* will be stored.
*
* Gets the font extents for the currently selected font.
**/
void
cairo_font_extents (cairo_t *cr,
cairo_font_extents_t *extents)
{
if (cr->status) {
_cairo_set_error (cr, cr->status);
return;
}
cr->status = _cairo_gstate_get_font_extents (cr->gstate, extents);
if (cr->status)
_cairo_set_error (cr, cr->status);
}
/**
* cairo_set_font_face:
* @cr: a #cairo_t
* @font_face: a #cairo_font_face_t, or %NULL to restore to the default font
*
* Replaces the current #cairo_font_face_t object in the #cairo_t with
* @font_face. The replaced font face in the #cairo_t will be
* destroyed if there are no other references to it.
**/
void
cairo_set_font_face (cairo_t *cr,
cairo_font_face_t *font_face)
{
if (cr->status) {
_cairo_set_error (cr, cr->status);
return;
}
cr->status = _cairo_gstate_set_font_face (cr->gstate, font_face);
if (cr->status)
_cairo_set_error (cr, cr->status);
}
/**
* cairo_set_font_size:
* @cr: a #cairo_t
* @size: the new font size, in user space units
*
* Sets the current font matrix to a scale by a factor of @size, replacing
* any font matrix previously set with cairo_set_font_size() or
* cairo_set_font_matrix(). This results in a font size of @size user space
* units. (More precisely, this matrix will result in the font's
* em-square being a @size by @size square in user space.)
**/
void
cairo_set_font_size (cairo_t *cr, double size)
{
if (cr->status) {
_cairo_set_error (cr, cr->status);
return;
}
cr->status = _cairo_gstate_set_font_size (cr->gstate, size);
if (cr->status)
_cairo_set_error (cr, cr->status);
}
/**
* cairo_set_font_matrix
* @cr: a #cairo_t
* @matrix: a #cairo_matrix_t describing a transform to be applied to
* the current font.
*
* Sets the current font matrix to @matrix. The font matrix gives a
* transformation from the design space of the font (in this space,
* the em-square is 1 unit by 1 unit) to user space. Normally, a
* simple scale is used (see cairo_set_font_size()), but a more
* complex font matrix can be used to shear the font
* or stretch it unequally along the two axes
**/
void
cairo_set_font_matrix (cairo_t *cr,
const cairo_matrix_t *matrix)
{
if (cr->status) {
_cairo_set_error (cr, cr->status);
return;
}
cr->status = _cairo_gstate_set_font_matrix (cr->gstate, matrix);
if (cr->status)
_cairo_set_error (cr, cr->status);
}
/**
* cairo_get_font_matrix
* @cr: a #cairo_t
* @matrix: return value for the matrix
*
* Stores the current font matrix into @matrix. See
* cairo_set_font_matrix().
**/
void
cairo_get_font_matrix (cairo_t *cr, cairo_matrix_t *matrix)
{
_cairo_gstate_get_font_matrix (cr->gstate, matrix);
}
/**
* cairo_set_font_options:
* @cr: a #cairo_t
* @options: font options to use
*
* Sets a set of custom font rendering options for the #cairo_t.
* Rendering options are derived by merging these options with the
* options derived from underlying surface; if the value in @options
* has a default value (like %CAIRO_ANTIALIAS_DEFAULT), then the value
* from the surface is used.
**/
void
cairo_set_font_options (cairo_t *cr,
const cairo_font_options_t *options)
{
if (cr->status) {
_cairo_set_error (cr, cr->status);
return;
}
cr->status = _cairo_gstate_set_font_options (cr->gstate, options);
if (cr->status)
_cairo_set_error (cr, cr->status);
}
/**
* cairo_get_font_options:
* @cr: a #cairo_t
* @options: a #cairo_font_options_t object into which to store
* the retrieved options. All existing values are overwritten
*
* Retrieves font rendering options set via #cairo_set_font_options.
* Note that the returned options do not include any options derived
* from the underlying surface; they are literally the options
* passed to cairo_set_font_options().
**/
void
cairo_get_font_options (cairo_t *cr,
cairo_font_options_t *options)
{
_cairo_gstate_get_font_options (cr->gstate, options);
}
/**
* cairo_text_extents:
* @cr: a #cairo_t
* @utf8: a string of text, encoded in utf-8
* @extents: a #cairo_text_extents_t object into which the results
* will be stored.
*
* Gets the extents for a string of text. The extents describe a
* user-space rectangle that encloses the "inked" portion of the text,
* (as it would be drawn by cairo_show_text). Additionally, the
* x_advance and y_advance values indicate the amount by which the
* current point would be advanced by cairo_show_text.
*
* Note that whitespace characters do not directly contribute to the
* size of the rectangle (extents.width and extents.height). They do
* contribute indirectly by changing the position of non-whitespace
* characters. In particular, trailing whitespace characters are
* likely to not affect the size of the rectangle, though they will
* affect the x_advance and y_advance values.
**/
void
cairo_text_extents (cairo_t *cr,
const char *utf8,
cairo_text_extents_t *extents)
{
cairo_glyph_t *glyphs = NULL;
int num_glyphs;
double x, y;
if (cr->status) {
_cairo_set_error (cr, cr->status);
return;
}
if (utf8 == NULL) {
extents->x_bearing = 0.0;
extents->y_bearing = 0.0;
extents->width = 0.0;
extents->height = 0.0;
extents->x_advance = 0.0;
extents->y_advance = 0.0;
return;
}
cairo_get_current_point (cr, &x, &y);
cr->status = _cairo_gstate_text_to_glyphs (cr->gstate, utf8,
x, y,
&glyphs, &num_glyphs);
if (cr->status) {
if (glyphs)
free (glyphs);
_cairo_set_error (cr, cr->status);
return;
}
cr->status = _cairo_gstate_glyph_extents (cr->gstate, glyphs, num_glyphs, extents);
if (glyphs)
free (glyphs);
if (cr->status)
_cairo_set_error (cr, cr->status);
}
/**
* cairo_glyph_extents:
* @cr: a #cairo_t
* @glyphs: an array of #cairo_glyph_t objects
* @num_glyphs: the number of elements in @glyphs
* @extents: a #cairo_text_extents_t object into which the results
* will be stored
*
* Gets the extents for an array of glyphs. The extents describe a
* user-space rectangle that encloses the "inked" portion of the
* glyphs, (as they would be drawn by cairo_show_glyphs).
* Additionally, the x_advance and y_advance values indicate the
* amount by which the current point would be advanced by
* cairo_show_glyphs.
*
* Note that whitespace glyphs do not contribute to the size of the
* rectangle (extents.width and extents.height).
**/
void
cairo_glyph_extents (cairo_t *cr,
cairo_glyph_t *glyphs,
int num_glyphs,
cairo_text_extents_t *extents)
{
if (cr->status) {
_cairo_set_error (cr, cr->status);
return;
}
cr->status = _cairo_gstate_glyph_extents (cr->gstate, glyphs, num_glyphs,
extents);
if (cr->status)
_cairo_set_error (cr, cr->status);
}
void
cairo_show_text (cairo_t *cr, const char *utf8)
{
cairo_glyph_t *glyphs = NULL;
int num_glyphs;
double x, y;
if (cr->status) {
_cairo_set_error (cr, cr->status);
return;
}
if (utf8 == NULL)
return;
cairo_get_current_point (cr, &x, &y);
cr->status = _cairo_gstate_text_to_glyphs (cr->gstate, utf8,
x, y,
&glyphs, &num_glyphs);
if (cr->status) {
if (glyphs)
free (glyphs);
_cairo_set_error (cr, cr->status);
return;
}
cr->status = _cairo_gstate_show_glyphs (cr->gstate, glyphs, num_glyphs);
if (glyphs)
free (glyphs);
if (cr->status)
_cairo_set_error (cr, cr->status);
}
void
cairo_show_glyphs (cairo_t *cr, cairo_glyph_t *glyphs, int num_glyphs)
{
if (cr->status) {
_cairo_set_error (cr, cr->status);
return;
}
cr->status = _cairo_gstate_show_glyphs (cr->gstate, glyphs, num_glyphs);
if (cr->status)
_cairo_set_error (cr, cr->status);
}
void
cairo_text_path (cairo_t *cr, const char *utf8)
{
cairo_glyph_t *glyphs = NULL;
int num_glyphs;
double x, y;
if (cr->status) {
_cairo_set_error (cr, cr->status);
return;
}
cairo_get_current_point (cr, &x, &y);
cr->status = _cairo_gstate_text_to_glyphs (cr->gstate, utf8,
x, y,
&glyphs, &num_glyphs);
if (cr->status) {
if (glyphs)
free (glyphs);
_cairo_set_error (cr, cr->status);
return;
}
cr->status = _cairo_gstate_glyph_path (cr->gstate,
glyphs, num_glyphs,
&cr->path);
if (glyphs)
free (glyphs);
if (cr->status)
_cairo_set_error (cr, cr->status);
}
void
cairo_glyph_path (cairo_t *cr, cairo_glyph_t *glyphs, int num_glyphs)
{
if (cr->status) {
_cairo_set_error (cr, cr->status);
return;
}
cr->status = _cairo_gstate_glyph_path (cr->gstate,
glyphs, num_glyphs,
&cr->path);
if (cr->status)
_cairo_set_error (cr, cr->status);
}
/**
* cairo_get_operator:
* @cr: a cairo context
*
* Gets the current compositing operator for a cairo context.
*
* Return value: the current compositing operator.
**/
cairo_operator_t
cairo_get_operator (cairo_t *cr)
{
return _cairo_gstate_get_operator (cr->gstate);
}
/**
* cairo_get_tolerance:
* @cr: a cairo context
*
* Gets the current tolerance value, as set by cairo_set_tolerance().
*
* Return value: the current tolerance value.
**/
double
cairo_get_tolerance (cairo_t *cr)
{
return _cairo_gstate_get_tolerance (cr->gstate);
}
/**
* cairo_get_antialias:
* @cr: a cairo context
*
* Gets the current shape antialiasing mode, as set by cairo_set_shape_antialias().
*
* Return value: the current shape antialiasing mode.
**/
cairo_antialias_t
cairo_get_antialias (cairo_t *cr)
{
return _cairo_gstate_get_antialias (cr->gstate);
}
/**
* cairo_get_current_point:
* @cr: a cairo context
* @x: return value for X coordinate of the current point
* @y: return value for Y coordinate of the current point
*
* Gets the current point of the current path, which is
* conceptually the final point reached by the path so far.
*
* The current point is returned in the user-space coordinate
* system. If there is no defined current point then @x and @y will
* both be set to 0.0.
*
* Most path construction functions alter the current point. See the
* following for details on how they affect the current point:
*
* cairo_new_path(), cairo_move_to(), cairo_line_to(),
* cairo_curve_to(), cairo_arc(), cairo_rel_move_to(),
* cairo_rel_line_to(), cairo_rel_curve_to(), cairo_arc(),
* cairo_text_path(), cairo_stroke_to_path()
**/
void
cairo_get_current_point (cairo_t *cr, double *x_ret, double *y_ret)
{
cairo_status_t status;
cairo_fixed_t x_fixed, y_fixed;
double x, y;
status = _cairo_path_fixed_get_current_point (&cr->path, &x_fixed, &y_fixed);
if (status == CAIRO_STATUS_NO_CURRENT_POINT) {
x = 0.0;
y = 0.0;
} else {
x = _cairo_fixed_to_double (x_fixed);
y = _cairo_fixed_to_double (y_fixed);
_cairo_gstate_backend_to_user (cr->gstate, &x, &y);
}
if (x_ret)
*x_ret = x;
if (y_ret)
*y_ret = y;
}
slim_hidden_def(cairo_get_current_point);
/**
* cairo_get_fill_rule:
* @cr: a cairo context
*
* Gets the current fill rule, as set by cairo_set_fill_rule().
*
* Return value: the current fill rule.
**/
cairo_fill_rule_t
cairo_get_fill_rule (cairo_t *cr)
{
return _cairo_gstate_get_fill_rule (cr->gstate);
}
/**
* cairo_get_line_width:
* @cr: a cairo context
*
* Gets the current line width, as set by cairo_set_line_width().
*
* Return value: the current line width, in user-space units.
**/
double
cairo_get_line_width (cairo_t *cr)
{
return _cairo_gstate_get_line_width (cr->gstate);
}
/**
* cairo_get_line_cap:
* @cr: a cairo context
*
* Gets the current line cap style, as set by cairo_set_line_cap().
*
* Return value: the current line cap style.
**/
cairo_line_cap_t
cairo_get_line_cap (cairo_t *cr)
{
return _cairo_gstate_get_line_cap (cr->gstate);
}
/**
* cairo_get_line_join:
* @cr: a cairo context
*
* Gets the current line join style, as set by cairo_set_line_join().
*
* Return value: the current line join style.
**/
cairo_line_join_t
cairo_get_line_join (cairo_t *cr)
{
return _cairo_gstate_get_line_join (cr->gstate);
}
/**
* cairo_get_miter_limit:
* @cr: a cairo context
*
* Gets the current miter limit, as set by cairo_set_miter_limit().
*
* Return value: the current miter limit.
**/
double
cairo_get_miter_limit (cairo_t *cr)
{
return _cairo_gstate_get_miter_limit (cr->gstate);
}
/**
* cairo_get_matrix:
* @cr: a cairo context
* @matrix: return value for the matrix
*
* Stores the current transformation matrix (CTM) into @matrix.
**/
void
cairo_get_matrix (cairo_t *cr, cairo_matrix_t *matrix)
{
_cairo_gstate_get_matrix (cr->gstate, matrix);
}
/**
* cairo_get_target:
* @cr: a cairo context
*
* Gets the target surface for the cairo context as passed to
* cairo_create().
*
* Return value: the target surface. This object is owned by cairo. To
* keep a reference to it, you must call cairo_surface_reference().
*
* This function will always return a valid pointer, but the result
* can be a "nil" surface if @cr is already in an error state,
* (ie. cairo_status(cr) != CAIRO_STATUS_SUCCESS). A nil surface is
* indicated by cairo_surface_status(surface) != CAIRO_STATUS_SUCCESS.
**/
cairo_surface_t *
cairo_get_target (cairo_t *cr)
{
if (cr->status)
return (cairo_surface_t*) &_cairo_surface_nil;
return _cairo_gstate_get_target (cr->gstate);
}
/**
* cairo_copy_path:
* @cr: a cairo context
*
* Creates a copy of the current path and returns it to the user as a
* #cairo_path_t. See #cairo_path_data_t for hints on how to iterate
* over the returned data structure.
*
* Return value: the copy of the current path. The caller owns the
* returned object and should call cairo_path_destroy() when finished
* with it.
*
* This function will always return a valid pointer, but the result
* will have no data, (data==NULL and num_data==0), if either of the
* following conditions hold:
*
* 1) If there is insufficient memory to copy the path.
*
* 2) If @cr is already in an error state.
*
* In either case, path->status will be set to CAIRO_STATUS_NO_MEMORY,
* (regardless of what the error status in @cr might have been).
**/
cairo_path_t *
cairo_copy_path (cairo_t *cr)
{
if (cr->status)
return (cairo_path_t*) &_cairo_path_nil;
return _cairo_path_data_create (&cr->path, cr->gstate);
}
/**
* cairo_copy_path_flat:
* @cr: a cairo context
*
* Gets a flattened copy of the current path and returns it to the
* user as a #cairo_path_t. See #cairo_path_data_t for hints on
* how to iterate over the returned data structure.
*
* This function is like cairo_copy_path() except that any curves
* in the path will be approximated with piecewise-linear
* approximations, (accurate to within the current tolerance
* value). That is, the result is guaranteed to not have any elements
* of type CAIRO_PATH_CURVE_TO which will instead be replaced by a
* series of CAIRO_PATH_LINE_TO elements.
*
* Return value: the copy of the current path. The caller owns the
* returned object and should call cairo_path_destroy() when finished
* with it.
*
* This function will always return a valid pointer, but the result
* will have no data, (data==NULL and num_data==0), if either of the
* following conditions hold:
*
* 1) If there is insufficient memory to copy the path. In this case
* path->status will be set to CAIRO_STATUS_NO_MEMORY.
*
* 2) If @cr is already in an error state. In this case path->status
* will contain the same status that would be returned by
* cairo_status(cr).
**/
cairo_path_t *
cairo_copy_path_flat (cairo_t *cr)
{
if (cr->status)
return (cairo_path_t*) &_cairo_path_nil;
else
return _cairo_path_data_create_flat (&cr->path, cr->gstate);
}
/**
* cairo_append_path:
* @cr: a cairo context
* @path: path to be appended
*
* Append the @path onto the current path. The @path may be either the
* return value from one of cairo_copy_path() or
* cairo_copy_path_flat() or it may be constructed manually. See
* #cairo_path_t for details on how the path data structure should be
* initialized, and note that path->status must be initialized to
* CAIRO_STATUS_SUCCESS.
**/
void
cairo_append_path (cairo_t *cr,
cairo_path_t *path)
{
if (cr->status) {
_cairo_set_error (cr, cr->status);
return;
}
if (path == NULL) {
_cairo_set_error (cr, CAIRO_STATUS_NULL_POINTER);
return;
}
if (path->status) {
if (path->status <= CAIRO_STATUS_LAST_STATUS)
_cairo_set_error (cr, path->status);
else
_cairo_set_error (cr, CAIRO_STATUS_INVALID_STATUS);
return;
}
if (path->data == NULL) {
_cairo_set_error (cr, CAIRO_STATUS_NULL_POINTER);
return;
}
cr->status = _cairo_path_data_append_to_context (path, cr);
if (cr->status)
_cairo_set_error (cr, cr->status);
}
cairo_status_t
cairo_status (cairo_t *cr)
{
return cr->status;
}
const char *
cairo_status_to_string (cairo_status_t status)
{
switch (status) {
case CAIRO_STATUS_SUCCESS:
return "success";
case CAIRO_STATUS_NO_MEMORY:
return "out of memory";
case CAIRO_STATUS_INVALID_RESTORE:
return "cairo_restore without matching cairo_save";
case CAIRO_STATUS_INVALID_POP_GROUP:
return "cairo_pop_group without matching cairo_push_group";
case CAIRO_STATUS_NO_CURRENT_POINT:
return "no current point defined";
case CAIRO_STATUS_INVALID_MATRIX:
return "invalid matrix (not invertible)";
case CAIRO_STATUS_INVALID_STATUS:
return "invalid value for an input cairo_status_t";
case CAIRO_STATUS_NULL_POINTER:
return "NULL pointer";
case CAIRO_STATUS_INVALID_STRING:
return "input string not valid UTF-8";
case CAIRO_STATUS_INVALID_PATH_DATA:
return "input path data not valid";
case CAIRO_STATUS_READ_ERROR:
return "error while reading from input stream";
case CAIRO_STATUS_WRITE_ERROR:
return "error while writing to output stream";
case CAIRO_STATUS_SURFACE_FINISHED:
return "the target surface has been finished";
case CAIRO_STATUS_SURFACE_TYPE_MISMATCH:
return "the surface type is not appropriate for the operation";
case CAIRO_STATUS_PATTERN_TYPE_MISMATCH:
return "the pattern type is not appropriate for the operation";
case CAIRO_STATUS_INVALID_CONTENT:
return "invalid value for an input cairo_content_t";
case CAIRO_STATUS_INVALID_FORMAT:
return "invalid value for an input cairo_format_t";
case CAIRO_STATUS_INVALID_VISUAL:
return "invalid value for an input Visual*";
case CAIRO_STATUS_FILE_NOT_FOUND:
return "file not found";
}
return "<unknown error status>";
}
void
_cairo_restrict_value (double *value, double min, double max)
{
if (*value < min)
*value = min;
else if (*value > max)
*value = max;
}