cairo/test/pdiff/pdiff.c
Behdad Esfahbod 2ca6a767ee [pdiff] Don't use float math functions if not using gcc with C99
The float version of many math functions were introduced in C99, and were
causing compile failure on systems like OS X.  We now define them to their
double variant if __USE_ISOC99 is not defined.  We may want to expand it later
to cover non-gcc compilers too, but since this is pdiff only, it's not really
important.
2006-12-17 14:24:57 -05:00

372 lines
9.6 KiB
C

/*
Metric
Copyright (C) 2006 Yangli Hector Yee
This program is free software; you can redistribute it and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation; either version 2 of the License,
or (at your option) any later version.
This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along with this program;
if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include "lpyramid.h"
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include "pdiff.h"
#ifndef M_PI
#define M_PI 3.14159265f
#endif
#ifndef __USE_ISOC99
#define expf exp
#define powf pow
#define fabsf fabs
#define sqrtf sqrt
#define log10f log10
#endif
/*
* Given the adaptation luminance, this function returns the
* threshold of visibility in cd per m^2
* TVI means Threshold vs Intensity function
* This version comes from Ward Larson Siggraph 1997
*/
static float
tvi (float adaptation_luminance)
{
/* returns the threshold luminance given the adaptation luminance
units are candelas per meter squared
*/
float log_a, r, result;
log_a = log10f(adaptation_luminance);
if (log_a < -3.94f) {
r = -2.86f;
} else if (log_a < -1.44f) {
r = powf(0.405f * log_a + 1.6f , 2.18f) - 2.86f;
} else if (log_a < -0.0184f) {
r = log_a - 0.395f;
} else if (log_a < 1.9f) {
r = powf(0.249f * log_a + 0.65f, 2.7f) - 0.72f;
} else {
r = log_a - 1.255f;
}
result = powf(10.0f , r);
return result;
}
/* computes the contrast sensitivity function (Barten SPIE 1989)
* given the cycles per degree (cpd) and luminance (lum)
*/
static float
csf (float cpd, float lum)
{
float a, b, result;
a = 440.0f * powf((1.0f + 0.7f / lum), -0.2f);
b = 0.3f * powf((1.0f + 100.0f / lum), 0.15f);
result = a * cpd * expf(-b * cpd) * sqrtf(1.0f + 0.06f * expf(b * cpd));
return result;
}
/*
* Visual Masking Function
* from Daly 1993
*/
static float
mask (float contrast)
{
float a, b, result;
a = powf(392.498f * contrast, 0.7f);
b = powf(0.0153f * a, 4.0f);
result = powf(1.0f + b, 0.25f);
return result;
}
/* convert Adobe RGB (1998) with reference white D65 to XYZ */
static void
AdobeRGBToXYZ (float r, float g, float b, float *x, float *y, float *z)
{
/* matrix is from http://www.brucelindbloom.com/ */
*x = r * 0.576700f + g * 0.185556f + b * 0.188212f;
*y = r * 0.297361f + g * 0.627355f + b * 0.0752847f;
*z = r * 0.0270328f + g * 0.0706879f + b * 0.991248f;
}
static void
XYZToLAB (float x, float y, float z, float *L, float *A, float *B)
{
static float xw = -1;
static float yw;
static float zw;
const float epsilon = 216.0f / 24389.0f;
const float kappa = 24389.0f / 27.0f;
float f[3];
float r[3];
int i;
/* reference white */
if (xw < 0) {
AdobeRGBToXYZ(1, 1, 1, &xw, &yw, &zw);
}
r[0] = x / xw;
r[1] = y / yw;
r[2] = z / zw;
for (i = 0; i < 3; i++) {
if (r[i] > epsilon) {
f[i] = powf(r[i], 1.0f / 3.0f);
} else {
f[i] = (kappa * r[i] + 16.0f) / 116.0f;
}
}
*L = 116.0f * f[1] - 16.0f;
*A = 500.0f * (f[0] - f[1]);
*B = 200.0f * (f[1] - f[2]);
}
static uint32_t
_get_pixel (cairo_surface_t *surface, int i)
{
uint32_t *data;
data = (uint32_t *) cairo_image_surface_get_data (surface);
return data[i];
}
static unsigned char
_get_red (cairo_surface_t *surface, int i)
{
uint32_t pixel;
uint8_t alpha;
pixel = _get_pixel (surface, i);
alpha = (pixel & 0xff000000) >> 24;
if (alpha == 0)
return 0;
else
return (((pixel & 0x00ff0000) >> 16) * 255 + alpha / 2) / alpha;
}
static unsigned char
_get_green (cairo_surface_t *surface, int i)
{
uint32_t pixel;
uint8_t alpha;
pixel = _get_pixel (surface, i);
alpha = (pixel & 0xff000000) >> 24;
if (alpha == 0)
return 0;
else
return (((pixel & 0x0000ff00) >> 8) * 255 + alpha / 2) / alpha;
}
static unsigned char
_get_blue (cairo_surface_t *surface, int i)
{
uint32_t pixel;
uint8_t alpha;
pixel = _get_pixel (surface, i);
alpha = (pixel & 0xff000000) >> 24;
if (alpha == 0)
return 0;
else
return (((pixel & 0x000000ff) >> 0) * 255 + alpha / 2) / alpha;
}
static void *
xmalloc (size_t size)
{
void *buf;
buf = malloc (size);
if (buf == NULL) {
fprintf (stderr, "Out of memory.\n");
exit (1);
}
return buf;
}
int
pdiff_compare (cairo_surface_t *surface_a,
cairo_surface_t *surface_b,
double gamma,
double luminance,
double field_of_view)
{
unsigned int dim = (cairo_image_surface_get_width (surface_a)
* cairo_image_surface_get_height (surface_a));
unsigned int i;
/* assuming colorspaces are in Adobe RGB (1998) convert to XYZ */
float *aX = xmalloc (dim * sizeof (float));
float *aY = xmalloc (dim * sizeof (float));
float *aZ = xmalloc (dim * sizeof (float));
float *bX = xmalloc (dim * sizeof (float));
float *bY = xmalloc (dim * sizeof (float));
float *bZ = xmalloc (dim * sizeof (float));
float *aLum = xmalloc (dim * sizeof (float));
float *bLum = xmalloc (dim * sizeof (float));
float *aA = xmalloc (dim * sizeof (float));
float *bA = xmalloc (dim * sizeof (float));
float *aB = xmalloc (dim * sizeof (float));
float *bB = xmalloc (dim * sizeof (float));
unsigned int x, y, w, h;
lpyramid_t *la, *lb;
float num_one_degree_pixels, pixels_per_degree, num_pixels;
unsigned int adaptation_level;
float cpd[MAX_PYR_LEVELS];
float F_freq[MAX_PYR_LEVELS - 2];
float csf_max;
unsigned int pixels_failed;
w = cairo_image_surface_get_width (surface_a);
h = cairo_image_surface_get_height (surface_a);
for (y = 0; y < h; y++) {
for (x = 0; x < w; x++) {
float r, g, b, l;
i = x + y * w;
r = powf(_get_red (surface_a, i) / 255.0f, gamma);
g = powf(_get_green (surface_a, i) / 255.0f, gamma);
b = powf(_get_blue (surface_a, i) / 255.0f, gamma);
AdobeRGBToXYZ(r,g,b,&aX[i],&aY[i],&aZ[i]);
XYZToLAB(aX[i], aY[i], aZ[i], &l, &aA[i], &aB[i]);
r = powf(_get_red (surface_b, i) / 255.0f, gamma);
g = powf(_get_green (surface_b, i) / 255.0f, gamma);
b = powf(_get_blue (surface_b, i) / 255.0f, gamma);
AdobeRGBToXYZ(r,g,b,&bX[i],&bY[i],&bZ[i]);
XYZToLAB(bX[i], bY[i], bZ[i], &l, &bA[i], &bB[i]);
aLum[i] = aY[i] * luminance;
bLum[i] = bY[i] * luminance;
}
}
la = lpyramid_create (aLum, w, h);
lb = lpyramid_create (bLum, w, h);
num_one_degree_pixels = (float) (2 * tan(field_of_view * 0.5 * M_PI / 180) * 180 / M_PI);
pixels_per_degree = w / num_one_degree_pixels;
num_pixels = 1;
adaptation_level = 0;
for (i = 0; i < MAX_PYR_LEVELS; i++) {
adaptation_level = i;
if (num_pixels > num_one_degree_pixels) break;
num_pixels *= 2;
}
cpd[0] = 0.5f * pixels_per_degree;
for (i = 1; i < MAX_PYR_LEVELS; i++) cpd[i] = 0.5f * cpd[i - 1];
csf_max = csf(3.248f, 100.0f);
for (i = 0; i < MAX_PYR_LEVELS - 2; i++) F_freq[i] = csf_max / csf( cpd[i], 100.0f);
pixels_failed = 0;
for (y = 0; y < h; y++) {
for (x = 0; x < w; x++) {
int index = x + y * w;
float contrast[MAX_PYR_LEVELS - 2];
float F_mask[MAX_PYR_LEVELS - 2];
float factor;
float delta;
float adapt;
bool pass;
float sum_contrast = 0;
for (i = 0; i < MAX_PYR_LEVELS - 2; i++) {
float n1 = fabsf(lpyramid_get_value (la,x,y,i) - lpyramid_get_value (la,x,y,i + 1));
float n2 = fabsf(lpyramid_get_value (lb,x,y,i) - lpyramid_get_value (lb,x,y,i + 1));
float numerator = (n1 > n2) ? n1 : n2;
float d1 = fabsf(lpyramid_get_value(la,x,y,i+2));
float d2 = fabsf(lpyramid_get_value(lb,x,y,i+2));
float denominator = (d1 > d2) ? d1 : d2;
if (denominator < 1e-5f) denominator = 1e-5f;
contrast[i] = numerator / denominator;
sum_contrast += contrast[i];
}
if (sum_contrast < 1e-5) sum_contrast = 1e-5f;
adapt = lpyramid_get_value(la,x,y,adaptation_level) + lpyramid_get_value(lb,x,y,adaptation_level);
adapt *= 0.5f;
if (adapt < 1e-5) adapt = 1e-5f;
for (i = 0; i < MAX_PYR_LEVELS - 2; i++) {
F_mask[i] = mask(contrast[i] * csf(cpd[i], adapt));
}
factor = 0;
for (i = 0; i < MAX_PYR_LEVELS - 2; i++) {
factor += contrast[i] * F_freq[i] * F_mask[i] / sum_contrast;
}
if (factor < 1) factor = 1;
if (factor > 10) factor = 10;
delta = fabsf(lpyramid_get_value(la,x,y,0) - lpyramid_get_value(lb,x,y,0));
pass = true;
/* pure luminance test */
if (delta > factor * tvi(adapt)) {
pass = false;
} else {
/* CIE delta E test with modifications */
float color_scale = 1.0f;
float da = aA[index] - bA[index];
float db = aB[index] - bB[index];
float delta_e;
/* ramp down the color test in scotopic regions */
if (adapt < 10.0f) {
color_scale = 1.0f - (10.0f - color_scale) / 10.0f;
color_scale = color_scale * color_scale;
}
da = da * da;
db = db * db;
delta_e = (da + db) * color_scale;
if (delta_e > factor) {
pass = false;
}
}
if (!pass)
pixels_failed++;
}
}
free (aX);
free (aY);
free (aZ);
free (bX);
free (bY);
free (bZ);
free (aLum);
free (bLum);
lpyramid_destroy (la);
lpyramid_destroy (lb);
free (aA);
free (bA);
free (aB);
free (bB);
return pixels_failed;
}