/* Metric Copyright (C) 2006 Yangli Hector Yee This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include "Metric.h" #include "CompareArgs.h" #include "RGBAImage.h" #include "LPyramid.h" #include #include "pdiff.h" #ifndef M_PI #define M_PI 3.14159265f #endif /* * Given the adaptation luminance, this function returns the * threshold of visibility in cd per m^2 * TVI means Threshold vs Intensity function * This version comes from Ward Larson Siggraph 1997 */ float tvi(float adaptation_luminance) { /* returns the threshold luminance given the adaptation luminance units are candelas per meter squared */ float log_a, r, result; log_a = log10f(adaptation_luminance); if (log_a < -3.94f) { r = -2.86f; } else if (log_a < -1.44f) { r = powf(0.405f * log_a + 1.6f , 2.18f) - 2.86f; } else if (log_a < -0.0184f) { r = log_a - 0.395f; } else if (log_a < 1.9f) { r = powf(0.249f * log_a + 0.65f, 2.7f) - 0.72f; } else { r = log_a - 1.255f; } result = powf(10.0f , r); return result; } /* computes the contrast sensitivity function (Barten SPIE 1989) * given the cycles per degree (cpd) and luminance (lum) */ float csf(float cpd, float lum) { float a, b, result; a = 440.0f * powf((1.0f + 0.7f / lum), -0.2f); b = 0.3f * powf((1.0f + 100.0f / lum), 0.15f); result = a * cpd * expf(-b * cpd) * sqrtf(1.0f + 0.06f * expf(b * cpd)); return result; } /* * Visual Masking Function * from Daly 1993 */ float mask(float contrast) { float a, b, result; a = powf(392.498f * contrast, 0.7f); b = powf(0.0153f * a, 4.0f); result = powf(1.0f + b, 0.25f); return result; } /* convert Adobe RGB (1998) with reference white D65 to XYZ */ void AdobeRGBToXYZ(float r, float g, float b, float &x, float &y, float &z) { /* matrix is from http://www.brucelindbloom.com/ */ x = r * 0.576700f + g * 0.185556f + b * 0.188212f; y = r * 0.297361f + g * 0.627355f + b * 0.0752847f; z = r * 0.0270328f + g * 0.0706879f + b * 0.991248f; } void XYZToLAB(float x, float y, float z, float &L, float &A, float &B) { static float xw = -1; static float yw; static float zw; /* reference white */ if (xw < 0) { AdobeRGBToXYZ(1, 1, 1, xw, yw, zw); } const float epsilon = 216.0f / 24389.0f; const float kappa = 24389.0f / 27.0f; float f[3]; float r[3]; r[0] = x / xw; r[1] = y / yw; r[2] = z / zw; for (int i = 0; i < 3; i++) { if (r[i] > epsilon) { f[i] = powf(r[i], 1.0f / 3.0f); } else { f[i] = (kappa * r[i] + 16.0f) / 116.0f; } } L = 116.0f * f[1] - 16.0f; A = 500.0f * (f[0] - f[1]); B = 200.0f * (f[1] - f[2]); } int Yee_Compare_Images(RGBAImage *image_a, RGBAImage *image_b, float gamma, float luminance, float field_of_view, bool verbose); bool Yee_Compare(CompareArgs &args) { if ((args.ImgA->Get_Width() != args.ImgB->Get_Width()) || (args.ImgA->Get_Height() != args.ImgB->Get_Height())) { args.ErrorStr = "Image dimensions do not match\n"; return false; } unsigned int i, dim, pixels_failed; dim = args.ImgA->Get_Width() * args.ImgA->Get_Height(); bool identical = true; for (i = 0; i < dim; i++) { if (args.ImgA->Get(i) != args.ImgB->Get(i)) { identical = false; break; } } if (identical) { args.ErrorStr = "Images are binary identical\n"; return true; } pixels_failed = Yee_Compare_Images (args.ImgA, args.ImgB, args.Gamma, args.Luminance, args.FieldOfView, args.Verbose); if (pixels_failed < args.ThresholdPixels) { args.ErrorStr = "Images are perceptually indistinguishable\n"; return true; } char different[100]; sprintf(different, "%d pixels are different\n", pixels_failed); args.ErrorStr = "Images are visibly different\n"; args.ErrorStr += different; if (args.ImgDiff) { #if IMAGE_DIFF_CODE_ENABLED if (args.ImgDiff->WritePPM()) { args.ErrorStr += "Wrote difference image to "; args.ErrorStr+= args.ImgDiff->Get_Name(); args.ErrorStr += "\n"; } else { args.ErrorStr += "Could not write difference image to "; args.ErrorStr+= args.ImgDiff->Get_Name(); args.ErrorStr += "\n"; } #endif args.ErrorStr += "Generation of image \"difference\" is currently disabled\n"; } return false; } int pdiff_compare (cairo_surface_t *surface_a, cairo_surface_t *surface_b, double gamma, double luminance, double field_of_view) { RGBAImage *image_a, *image_b; image_a = new RGBACairoImage (surface_a); image_b = new RGBACairoImage (surface_b); return Yee_Compare_Images (image_a, image_b, gamma, luminance, field_of_view, false); } int Yee_Compare_Images(RGBAImage *image_a, RGBAImage *image_b, float gamma, float luminance, float field_of_view, bool verbose) { unsigned int i, dim; dim = image_a->Get_Width() * image_a->Get_Height(); /* assuming colorspaces are in Adobe RGB (1998) convert to XYZ */ float *aX = new float[dim]; float *aY = new float[dim]; float *aZ = new float[dim]; float *bX = new float[dim]; float *bY = new float[dim]; float *bZ = new float[dim]; float *aLum = new float[dim]; float *bLum = new float[dim]; float *aA = new float[dim]; float *bA = new float[dim]; float *aB = new float[dim]; float *bB = new float[dim]; if (verbose) printf("Converting RGB to XYZ\n"); unsigned int x, y, w, h; w = image_a->Get_Width(); h = image_a->Get_Height(); for (y = 0; y < h; y++) { for (x = 0; x < w; x++) { float r, g, b, l; i = x + y * w; r = powf(image_a->Get_Red(i) / 255.0f, gamma); g = powf(image_a->Get_Green(i) / 255.0f, gamma); b = powf(image_a->Get_Blue(i) / 255.0f, gamma); AdobeRGBToXYZ(r,g,b,aX[i],aY[i],aZ[i]); XYZToLAB(aX[i], aY[i], aZ[i], l, aA[i], aB[i]); r = powf(image_b->Get_Red(i) / 255.0f, gamma); g = powf(image_b->Get_Green(i) / 255.0f, gamma); b = powf(image_b->Get_Blue(i) / 255.0f, gamma); AdobeRGBToXYZ(r,g,b,bX[i],bY[i],bZ[i]); XYZToLAB(bX[i], bY[i], bZ[i], l, bA[i], bB[i]); aLum[i] = aY[i] * luminance; bLum[i] = bY[i] * luminance; } } if (verbose) printf("Constructing Laplacian Pyramids\n"); LPyramid *la = new LPyramid(aLum, w, h); LPyramid *lb = new LPyramid(bLum, w, h); float num_one_degree_pixels = (float) (2 * tan(field_of_view * 0.5 * M_PI / 180) * 180 / M_PI); float pixels_per_degree = w / num_one_degree_pixels; if (verbose) printf("Performing test\n"); float num_pixels = 1; unsigned int adaptation_level = 0; for (i = 0; i < MAX_PYR_LEVELS; i++) { adaptation_level = i; if (num_pixels > num_one_degree_pixels) break; num_pixels *= 2; } float cpd[MAX_PYR_LEVELS]; cpd[0] = 0.5f * pixels_per_degree; for (i = 1; i < MAX_PYR_LEVELS; i++) cpd[i] = 0.5f * cpd[i - 1]; float csf_max = csf(3.248f, 100.0f); float F_freq[MAX_PYR_LEVELS - 2]; for (i = 0; i < MAX_PYR_LEVELS - 2; i++) F_freq[i] = csf_max / csf( cpd[i], 100.0f); unsigned int pixels_failed = 0; for (y = 0; y < h; y++) { for (x = 0; x < w; x++) { int index = x + y * w; float contrast[MAX_PYR_LEVELS - 2]; float sum_contrast = 0; for (i = 0; i < MAX_PYR_LEVELS - 2; i++) { float n1 = fabsf(la->Get_Value(x,y,i) - la->Get_Value(x,y,i + 1)); float n2 = fabsf(lb->Get_Value(x,y,i) - lb->Get_Value(x,y,i + 1)); float numerator = (n1 > n2) ? n1 : n2; float d1 = fabsf(la->Get_Value(x,y,i+2)); float d2 = fabsf(lb->Get_Value(x,y,i+2)); float denominator = (d1 > d2) ? d1 : d2; if (denominator < 1e-5f) denominator = 1e-5f; contrast[i] = numerator / denominator; sum_contrast += contrast[i]; } if (sum_contrast < 1e-5) sum_contrast = 1e-5f; float F_mask[MAX_PYR_LEVELS - 2]; float adapt = la->Get_Value(x,y,adaptation_level) + lb->Get_Value(x,y,adaptation_level); adapt *= 0.5f; if (adapt < 1e-5) adapt = 1e-5f; for (i = 0; i < MAX_PYR_LEVELS - 2; i++) { F_mask[i] = mask(contrast[i] * csf(cpd[i], adapt)); } float factor = 0; for (i = 0; i < MAX_PYR_LEVELS - 2; i++) { factor += contrast[i] * F_freq[i] * F_mask[i] / sum_contrast; } if (factor < 1) factor = 1; if (factor > 10) factor = 10; float delta = fabsf(la->Get_Value(x,y,0) - lb->Get_Value(x,y,0)); bool pass = true; /* pure luminance test */ if (delta > factor * tvi(adapt)) { pass = false; } else { /* CIE delta E test with modifications */ float color_scale = 1.0f; /* ramp down the color test in scotopic regions */ if (adapt < 10.0f) { color_scale = 1.0f - (10.0f - color_scale) / 10.0f; color_scale = color_scale * color_scale; } float da = aA[index] - bA[index]; float db = aB[index] - bB[index]; da = da * da; db = db * db; float delta_e = (da + db) * color_scale; if (delta_e > factor) { pass = false; } } if (!pass) pixels_failed++; #if IMAGE_DIFF_ENABLED if (!pass) { if (args.ImgDiff) { args.ImgDiff->Set(255, 0, 0, 255, index); } } else { if (args.ImgDiff) { args.ImgDiff->Set(0, 0, 0, 255, index); } } #endif } } if (aX) delete[] aX; if (aY) delete[] aY; if (aZ) delete[] aZ; if (bX) delete[] bX; if (bY) delete[] bY; if (bZ) delete[] bZ; if (aLum) delete[] aLum; if (bLum) delete[] bLum; if (la) delete la; if (lb) delete lb; if (aA) delete aA; if (bA) delete bA; if (aB) delete aB; if (bB) delete bB; return pixels_failed; }