Handling clip as part of the surface state, as opposed to being part of
the operation state, is cumbersome and a hindrance to providing true proxy
surface support. For example, the clip must be copied from the surface
onto the fallback image, but this was forgotten causing undue hassle in
each backend. Another example is the contortion the meta surface
endures to ensure the clip is correctly recorded. By contrast passing the
clip along with the operation is quite simple and enables us to write
generic handlers for providing surface wrappers. (And in the future, we
should be able to write more esoteric wrappers, e.g. automatic 2x FSAA,
trivially.)
In brief, instead of the surface automatically applying the clip before
calling the backend, the backend can call into a generic helper to apply
clipping. For raster surfaces, clip regions are handled automatically as
part of the composite interface. For vector surfaces, a clip helper is
introduced to replay and callback into an intersect_clip_path() function
as necessary.
Whilst this is not primarily a performance related change (the change
should just move the computation of the clip from the moment it is applied
by the user to the moment it is required by the backend), it is important
to track any potential regression:
ppc:
Speedups
========
image-rgba evolution-20090607-0 1026085.22 0.18% -> 672972.07 0.77%: 1.52x speedup
▌
image-rgba evolution-20090618-0 680579.98 0.12% -> 573237.66 0.16%: 1.19x speedup
▎
image-rgba swfdec-fill-rate-4xaa-0 460296.92 0.36% -> 407464.63 0.42%: 1.13x speedup
▏
image-rgba swfdec-fill-rate-2xaa-0 128431.95 0.47% -> 115051.86 0.42%: 1.12x speedup
▏
Slowdowns
=========
image-rgba firefox-periodic-table-0 56837.61 0.78% -> 66055.17 3.20%: 1.09x slowdown
▏
The meta-surface is a vital tool to record a trace of drawing commands
in-memory. As such it is used throughout cairo.
The value of such a surface is immediately obvious and should be
applicable for many applications. The first such case is by
cairo-test-trace which wants to record the entire graph of drawing commands
that affect a surface in the event of a failure.
Remove some redundant defining of surfaces and contexts and of setting
defaults. In order to reduce the number of defines, we need to operate on
the operand stack more frequently - though in practice those operations
are quite rare.
If we are dithering on the Xlib backend we can not simply repaint the
surface used for a solid pattern and must recreate it from scratch.
However, for ordinary XRender usage we do not want to have to pay that
price - so query the backend to see if we can reuse the surface.
A surface will have the chance to use span rendering at cairo_fill()
time by creating a renderer for a specific combination of
pattern/dst/op before the path is scan converted. The protocol is to
first call check_span_renderer() to see if the surface wants to render
with spans and then later call create_span_renderer() to create the
renderer for real once the extents of the path are known.
No backends have an implementation yet.
A new meta-surface backend for serialising drawing operations to a
CairoScript file. The principal use (as currently envisaged) is to provide
a round-trip testing mechanism for CairoScript - i.e. we can generate
script files for every test in the suite and check that we can replay them
with perfect fidelity. (Obviously this does not provide complete coverage
of CairoScript's syntax, but should give reasonable coverage over the
operators.)