cairo/xrtransform.c

186 lines
4.1 KiB
C
Raw Normal View History

2002-06-11 04:02:23 +00:00
/*
* $XFree86: $
*
* Copyright <EFBFBD> 2002 Carl D. Worth
2002-06-11 04:02:23 +00:00
*
* Permission to use, copy, modify, distribute, and sell this software
* and its documentation for any purpose is hereby granted without
* fee, provided that the above copyright notice appear in all copies
* and that both that copyright notice and this permission notice
* appear in supporting documentation, and that the name of Carl
* D. Worth not be used in advertising or publicity pertaining to
* distribution of the software without specific, written prior
* permission. Carl D. Worth makes no representations about the
* suitability of this software for any purpose. It is provided "as
* is" without express or implied warranty.
2002-06-11 04:02:23 +00:00
*
* CARL D. WORTH DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
* SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
* FITNESS, IN NO EVENT SHALL CARL D. WORTH BE LIABLE FOR ANY SPECIAL,
* INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER
* RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR
* IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
2002-06-11 04:02:23 +00:00
#include <stdlib.h>
#include <math.h>
#include "xrint.h"
static XrTransform XR_TRANSFORM_DEFAULT = {
{
{1, 0},
{0, 1},
{0, 0}
}
};
2002-06-11 04:02:23 +00:00
void
_XrTransformInit(XrTransform *transform)
2002-06-11 04:02:23 +00:00
{
*transform = XR_TRANSFORM_DEFAULT;
}
void
_XrTransformDeinit(XrTransform *transform)
{
/* nothing to do here */
}
2002-06-11 04:02:23 +00:00
void
_XrTransformInitMatrix(XrTransform *transform,
double a, double b,
double c, double d,
double tx, double ty)
2002-06-11 04:02:23 +00:00
{
transform->m[0][0] = a; transform->m[0][1] = b;
transform->m[1][0] = c; transform->m[1][1] = d;
transform->m[2][0] = tx; transform->m[2][1] = ty;
2002-06-11 04:02:23 +00:00
}
void
_XrTransformInitTranslate(XrTransform *transform,
double tx, double ty)
2002-06-11 04:02:23 +00:00
{
_XrTransformInitMatrix(transform,
1, 0,
0, 1,
tx, ty);
2002-06-11 04:02:23 +00:00
}
void
_XrTransformInitScale(XrTransform *transform,
double sx, double sy)
2002-06-11 04:02:23 +00:00
{
_XrTransformInitMatrix(transform,
sx, 0,
0, sy,
0, 0);
2002-06-11 04:02:23 +00:00
}
void
_XrTransformInitRotate(XrTransform *transform,
double angle)
2002-06-11 04:02:23 +00:00
{
_XrTransformInitMatrix(transform,
cos(angle), sin(angle),
-sin(angle), cos(angle),
0, 0);
2002-06-11 04:02:23 +00:00
}
void
_XrTransformMultiplyIntoLeft(XrTransform *t1, const XrTransform *t2)
2002-06-11 04:02:23 +00:00
{
XrTransform new;
_XrTransformMultiply(t1, t2, &new);
*t1 = new;
}
void
_XrTransformMultiplyIntoRight(const XrTransform *t1, XrTransform *t2)
{
XrTransform new;
_XrTransformMultiply(t1, t2, &new);
*t2 = new;
2002-06-11 04:02:23 +00:00
}
void
_XrTransformMultiply(const XrTransform *t1, const XrTransform *t2, XrTransform *new)
2002-06-11 04:02:23 +00:00
{
int row, col, n;
double t;
2002-06-11 04:02:23 +00:00
for (row = 0; row < 3; row++) {
for (col = 0; col < 2; col++) {
if (row == 2)
t = t2->m[2][col];
else
t = 0;
for (n = 0; n < 2; n++) {
t += t1->m[row][n] * t2->m[n][col];
}
new->m[row][col] = t;
}
}
2002-06-11 04:02:23 +00:00
}
void
_XrTransformPointWithoutTranslate(XrTransform *transform, XPointDouble *pt)
2002-06-11 04:02:23 +00:00
{
double new_x, new_y;
new_x = (transform->m[0][0] * pt->x
+ transform->m[1][0] * pt->y);
new_y = (transform->m[0][1] * pt->x
+ transform->m[1][1] * pt->y);
2002-06-11 04:02:23 +00:00
pt->x = new_x;
pt->y = new_y;
}
void
_XrTransformPoint(XrTransform *transform, XPointDouble *pt)
2002-06-11 04:02:23 +00:00
{
_XrTransformPointWithoutTranslate(transform, pt);
2002-06-11 04:02:23 +00:00
pt->x += transform->m[2][0];
pt->y += transform->m[2][1];
2002-06-11 04:02:23 +00:00
}
void
_XrTransformEigenValues(XrTransform *transform, double *lambda1, double *lambda2)
{
/* The eigenvalues of an NxN matrix M are found by solving the polynomial:
det(M - lI) = 0
which for our 2x2 matrix:
M = a b
c d
gives:
l^2 - (a+d)l + (ad - bc) = 0
l = (a+d +/- sqrt(a^2 + 2ad + d^2 - 4(ad-bc))) / 2;
*/
double a, b, c, d, rad;
a = transform->m[0][0];
b = transform->m[0][1];
c = transform->m[1][0];
d = transform->m[1][1];
rad = sqrt(a*a + 2*a*d + d*d - 4*(a*d - b*c));
*lambda1 = (a + d + rad) / 2.0;
*lambda2 = (a + d - rad) / 2.0;
}