cairo/src/cairo-traps.c

712 lines
20 KiB
C
Raw Normal View History

2002-08-07 19:48:49 +00:00
/*
* Copyright <EFBFBD> 2002 Keith Packard
2002-08-07 19:48:49 +00:00
*
* Permission to use, copy, modify, distribute, and sell this software and its
* documentation for any purpose is hereby granted without fee, provided that
* the above copyright notice appear in all copies and that both that
* copyright notice and this permission notice appear in supporting
* documentation, and that the name of Keith Packard not be used in
* advertising or publicity pertaining to distribution of the software without
* specific, written prior permission. Keith Packard makes no
* representations about the suitability of this software for any purpose. It
* is provided "as is" without express or implied warranty.
*
* KEITH PACKARD DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
* INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO
* EVENT SHALL KEITH PACKARD BE LIABLE FOR ANY SPECIAL, INDIRECT OR
* CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,
* DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
* TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
* PERFORMANCE OF THIS SOFTWARE.
*
2003-07-18 11:34:19 +00:00
* 2002-07-15: Converted from XRenderCompositeDoublePoly to cairo_trap. Carl D. Worth
2002-08-07 19:48:49 +00:00
*/
2003-07-18 11:34:19 +00:00
#include "cairoint.h"
2002-08-07 19:48:49 +00:00
2003-07-18 11:34:19 +00:00
#define CAIRO_TRAPS_GROWTH_INC 10
2002-08-07 19:48:49 +00:00
/* private functions */
2003-07-18 11:34:19 +00:00
static cairo_status_t
_cairo_traps_grow_by (cairo_traps_t *traps, int additional);
2002-08-07 19:48:49 +00:00
static cairo_status_t
_cairo_traps_add_trap (cairo_traps_t *traps, cairo_fixed_t top, cairo_fixed_t bottom,
cairo_line_t *left, cairo_line_t *right);
static cairo_status_t
_cairo_traps_add_trap_from_points (cairo_traps_t *traps, cairo_fixed_t top, cairo_fixed_t bottom,
cairo_point_t left_p1, cairo_point_t left_p2,
cairo_point_t right_p1, cairo_point_t right_p2);
2002-08-07 19:48:49 +00:00
static int
2003-07-18 11:34:19 +00:00
_compare_point_fixed_by_y (const void *av, const void *bv);
2002-08-07 19:48:49 +00:00
static int
2003-07-18 11:34:19 +00:00
_compare_cairo_edge_by_top (const void *av, const void *bv);
2002-08-07 19:48:49 +00:00
static int
_compare_cairo_edge_by_slope (const void *av, const void *bv);
static cairo_fixed_16_16_t
_compute_x (cairo_line_t *line, cairo_fixed_t y);
2002-08-07 19:48:49 +00:00
static int
_line_segs_intersect_ceil (cairo_line_t *left, cairo_line_t *right, cairo_fixed_t *y_ret);
2002-08-07 19:48:49 +00:00
void
_cairo_traps_init (cairo_traps_t *traps)
2002-08-07 19:48:49 +00:00
{
traps->num_traps = 0;
2002-08-07 19:48:49 +00:00
traps->traps_size = 0;
traps->traps = NULL;
2002-08-07 19:48:49 +00:00
}
void
_cairo_traps_fini (cairo_traps_t *traps)
2002-08-07 19:48:49 +00:00
{
if (traps->traps_size) {
free (traps->traps);
traps->traps = NULL;
traps->traps_size = 0;
traps->num_traps = 0;
2002-08-07 19:48:49 +00:00
}
}
static cairo_status_t
_cairo_traps_add_trap (cairo_traps_t *traps, cairo_fixed_t top, cairo_fixed_t bottom,
cairo_line_t *left, cairo_line_t *right)
2002-08-07 19:48:49 +00:00
{
2003-07-18 11:34:19 +00:00
cairo_status_t status;
cairo_trapezoid_t *trap;
2002-08-07 19:48:49 +00:00
if (top == bottom) {
2003-07-18 11:34:19 +00:00
return CAIRO_STATUS_SUCCESS;
}
if (traps->num_traps >= traps->traps_size) {
status = _cairo_traps_grow_by (traps, CAIRO_TRAPS_GROWTH_INC);
if (status)
return status;
2002-08-07 19:48:49 +00:00
}
trap = &traps->traps[traps->num_traps];
2002-08-07 19:48:49 +00:00
trap->top = top;
trap->bottom = bottom;
trap->left = *left;
trap->right = *right;
2002-08-07 19:48:49 +00:00
traps->num_traps++;
2003-07-18 11:34:19 +00:00
return CAIRO_STATUS_SUCCESS;
2002-08-07 19:48:49 +00:00
}
static cairo_status_t
_cairo_traps_add_trap_from_points (cairo_traps_t *traps, cairo_fixed_t top, cairo_fixed_t bottom,
cairo_point_t left_p1, cairo_point_t left_p2,
cairo_point_t right_p1, cairo_point_t right_p2)
2002-08-07 19:48:49 +00:00
{
cairo_line_t left;
cairo_line_t right;
2002-08-07 19:48:49 +00:00
left.p1 = left_p1;
left.p2 = left_p2;
right.p1 = right_p1;
right.p2 = right_p2;
return _cairo_traps_add_trap (traps, top, bottom, &left, &right);
2002-08-07 19:48:49 +00:00
}
2003-07-18 11:34:19 +00:00
static cairo_status_t
_cairo_traps_grow_by (cairo_traps_t *traps, int additional)
2002-08-07 19:48:49 +00:00
{
cairo_trapezoid_t *new_traps;
int old_size = traps->traps_size;
int new_size = traps->num_traps + additional;
2002-08-07 19:48:49 +00:00
if (new_size <= traps->traps_size) {
2003-07-18 11:34:19 +00:00
return CAIRO_STATUS_SUCCESS;
2002-08-07 19:48:49 +00:00
}
traps->traps_size = new_size;
new_traps = realloc (traps->traps, traps->traps_size * sizeof (cairo_trapezoid_t));
2002-08-07 19:48:49 +00:00
if (new_traps == NULL) {
traps->traps_size = old_size;
2003-07-18 11:34:19 +00:00
return CAIRO_STATUS_NO_MEMORY;
2002-08-07 19:48:49 +00:00
}
traps->traps = new_traps;
2003-07-18 11:34:19 +00:00
return CAIRO_STATUS_SUCCESS;
2002-08-07 19:48:49 +00:00
}
static int
2003-07-18 11:34:19 +00:00
_compare_point_fixed_by_y (const void *av, const void *bv)
2002-08-07 19:48:49 +00:00
{
const cairo_point_t *a = av, *b = bv;
2002-08-07 19:48:49 +00:00
int ret = a->y - b->y;
if (ret == 0) {
ret = a->x - b->x;
}
return ret;
2002-08-07 19:48:49 +00:00
}
2003-07-18 11:34:19 +00:00
cairo_status_t
_cairo_traps_tessellate_triangle (cairo_traps_t *traps, cairo_point_t t[3])
{
2003-07-18 11:34:19 +00:00
cairo_status_t status;
cairo_line_t line;
cairo_fixed_16_16_t intersect;
cairo_point_t tsort[3];
memcpy (tsort, t, 3 * sizeof (cairo_point_t));
qsort (tsort, 3, sizeof (cairo_point_t), _compare_point_fixed_by_y);
/* horizontal top edge requires special handling */
if (tsort[0].y == tsort[1].y) {
if (tsort[0].x < tsort[1].x)
status = _cairo_traps_add_trap_from_points (traps,
tsort[1].y, tsort[2].y,
tsort[0], tsort[2],
tsort[1], tsort[2]);
else
status = _cairo_traps_add_trap_from_points (traps,
tsort[1].y, tsort[2].y,
tsort[1], tsort[2],
tsort[0], tsort[2]);
return status;
}
line.p1 = tsort[0];
line.p2 = tsort[1];
2003-07-18 11:34:19 +00:00
intersect = _compute_x (&line, tsort[2].y);
if (intersect < tsort[2].x) {
status = _cairo_traps_add_trap_from_points (traps,
tsort[0].y, tsort[1].y,
tsort[0], tsort[1],
tsort[0], tsort[2]);
if (status)
return status;
status = _cairo_traps_add_trap_from_points (traps,
tsort[1].y, tsort[2].y,
tsort[1], tsort[2],
tsort[0], tsort[2]);
if (status)
return status;
} else {
status = _cairo_traps_add_trap_from_points (traps,
tsort[0].y, tsort[1].y,
tsort[0], tsort[2],
tsort[0], tsort[1]);
if (status)
return status;
status = _cairo_traps_add_trap_from_points (traps,
tsort[1].y, tsort[2].y,
tsort[0], tsort[2],
tsort[1], tsort[2]);
if (status)
return status;
}
2003-07-18 11:34:19 +00:00
return CAIRO_STATUS_SUCCESS;
}
/* Warning: This function reorders the elements of the array provided. */
2003-07-18 11:34:19 +00:00
cairo_status_t
_cairo_traps_tessellate_rectangle (cairo_traps_t *traps, cairo_point_t q[4])
2002-08-07 19:48:49 +00:00
{
2003-07-18 11:34:19 +00:00
cairo_status_t status;
qsort (q, 4, sizeof (cairo_point_t), _compare_point_fixed_by_y);
2002-08-07 19:48:49 +00:00
if (q[1].x > q[2].x) {
status = _cairo_traps_add_trap_from_points (traps,
q[0].y, q[1].y, q[0], q[2], q[0], q[1]);
if (status)
return status;
status = _cairo_traps_add_trap_from_points (traps,
q[1].y, q[2].y, q[0], q[2], q[1], q[3]);
if (status)
return status;
status = _cairo_traps_add_trap_from_points (traps,
q[2].y, q[3].y, q[2], q[3], q[1], q[3]);
if (status)
return status;
2002-08-07 19:48:49 +00:00
} else {
status = _cairo_traps_add_trap_from_points (traps,
q[0].y, q[1].y, q[0], q[1], q[0], q[2]);
if (status)
return status;
status = _cairo_traps_add_trap_from_points (traps,
q[1].y, q[2].y, q[1], q[3], q[0], q[2]);
if (status)
return status;
status = _cairo_traps_add_trap_from_points (traps,
q[2].y, q[3].y, q[1], q[3], q[2], q[3]);
if (status)
return status;
2002-08-07 19:48:49 +00:00
}
2003-07-18 11:34:19 +00:00
return CAIRO_STATUS_SUCCESS;
2002-08-07 19:48:49 +00:00
}
static int
2003-07-18 11:34:19 +00:00
_compare_cairo_edge_by_top (const void *av, const void *bv)
2002-08-07 19:48:49 +00:00
{
2003-07-18 11:34:19 +00:00
const cairo_edge_t *a = av, *b = bv;
2002-08-07 19:48:49 +00:00
return a->edge.p1.y - b->edge.p1.y;
}
/* Return value is:
> 0 if a is "clockwise" from b, (in a mathematical, not a graphical sense)
2003-07-18 11:34:19 +00:00
== 0 if slope (a) == slope (b)
< 0 if a is "counter-clockwise" from b
*/
static int
2003-07-18 11:34:19 +00:00
_compare_cairo_edge_by_slope (const void *av, const void *bv)
{
2003-07-18 11:34:19 +00:00
const cairo_edge_t *a = av, *b = bv;
cairo_fixed_32_32_t d;
cairo_fixed_48_16_t a_dx = a->edge.p2.x - a->edge.p1.x;
cairo_fixed_48_16_t a_dy = a->edge.p2.y - a->edge.p1.y;
cairo_fixed_48_16_t b_dx = b->edge.p2.x - b->edge.p1.x;
cairo_fixed_48_16_t b_dy = b->edge.p2.y - b->edge.p1.y;
d = b_dy * a_dx - a_dy * b_dx;
if (d > 0)
return 1;
else if (d == 0)
return 0;
else
return -1;
}
static int
_compare_cairo_edge_by_current_x_slope (const void *av, const void *bv)
{
2003-07-18 11:34:19 +00:00
const cairo_edge_t *a = av, *b = bv;
int ret;
ret = a->current_x - b->current_x;
if (ret == 0)
2003-07-18 11:34:19 +00:00
ret = _compare_cairo_edge_by_slope (a, b);
return ret;
2002-08-07 19:48:49 +00:00
}
2003-07-18 11:34:19 +00:00
/* XXX: Both _compute_x and _compute_inverse_slope will divide by zero
for horizontal lines. Now, we "know" that when we are tessellating
polygons that the polygon data structure discards all horizontal
edges, but there's nothing here to guarantee that. I suggest the
following:
A) Move all of the polygon tessellation code out of xrtraps.c and
into xrpoly.c, (in order to be in the same module as the code
discarding horizontal lines).
OR
B) Re-implement the line intersection in a way that avoids all
division by zero. Here's one approach. The only disadvantage
might be that that there are not meaningful names for all of the
sub-computations -- just a bunch of determinants. I haven't
looked at complexity, (both are probably similar and it probably
doesn't matter much anyway).
*/
static const cairo_fixed_32_32_t
_det16_32 (cairo_fixed_16_16_t a,
cairo_fixed_16_16_t b,
cairo_fixed_16_16_t c,
cairo_fixed_16_16_t d)
{
return _cairo_int64_sub (_cairo_int32x32_64_mul (a, d),
_cairo_int32x32_64_mul (b, c));
}
static const cairo_fixed_64_64_t
_det32_64 (cairo_fixed_32_32_t a,
cairo_fixed_32_32_t b,
cairo_fixed_32_32_t c,
cairo_fixed_32_32_t d)
{
return _cairo_int128_sub (_cairo_int64x64_128_mul (a, d),
_cairo_int64x64_128_mul (b, c));
}
static const cairo_fixed_32_32_t
_fixed_16_16_to_fixed_32_32 (cairo_fixed_16_16_t a)
{
return _cairo_int64_lsl (_cairo_int32_to_int64 (a), 16);
}
static int
_line_segs_intersect_ceil (cairo_line_t *l1, cairo_line_t *l2, cairo_fixed_t *y_intersection)
{
cairo_fixed_16_16_t dx1, dx2, dy1, dy2;
cairo_fixed_32_32_t den_det;
cairo_fixed_32_32_t l1_det, l2_det;
cairo_fixed_64_64_t num_det;
cairo_fixed_32_32_t intersect_32_32;
cairo_fixed_48_16_t intersect_48_16;
cairo_fixed_16_16_t intersect_16_16;
cairo_quorem128_t qr;
dx1 = l1->p1.x - l1->p2.x;
dy1 = l1->p1.y - l1->p2.y;
dx2 = l2->p1.x - l2->p2.x;
dy2 = l2->p1.y - l2->p2.y;
den_det = _det16_32 (dx1, dy1,
dx2, dy2);
if (_cairo_int64_eq (den_det, _cairo_int32_to_int64(0)))
return 0;
l1_det = _det16_32 (l1->p1.x, l1->p1.y,
l1->p2.x, l1->p2.y);
l2_det = _det16_32 (l2->p1.x, l2->p1.y,
l2->p2.x, l2->p2.y);
num_det = _det32_64 (l1_det, _fixed_16_16_to_fixed_32_32 (dy1),
l2_det, _fixed_16_16_to_fixed_32_32 (dy2));
/*
* Ok, this one is a bit tricky in fixed point, the denominator
* needs to be left with 32-bits of fraction so that the
* result of the divide ends up with 32-bits of fraction (64 - 32 = 32)
*/
qr = _cairo_int128_divrem (num_det, _cairo_int64_to_int128 (den_det));
intersect_32_32 = _cairo_int128_to_int64 (qr.quo);
/*
* Find the ceiling of the quotient -- divrem returns
* the quotient truncated towards zero, so if the
* quotient should be positive (num_den and den_det have same sign)
* bump the quotient up by one.
*/
if (_cairo_int128_ne (qr.rem, _cairo_int32_to_int128 (0)) &&
(_cairo_int128_ge (num_det, _cairo_int32_to_int128 (0)) ==
_cairo_int64_ge (den_det, _cairo_int32_to_int64 (0))))
{
intersect_32_32 = _cairo_int64_add (intersect_32_32,
_cairo_int32_to_int64 (1));
}
/*
* Now convert from 32.32 to 48.16 and take the ceiling;
* this requires adding in 15 1 bits and shifting the result
*/
intersect_32_32 = _cairo_int64_add (intersect_32_32,
_cairo_int32_to_int64 ((1 << 16) - 1));
intersect_48_16 = _cairo_int64_rsa (intersect_32_32, 16);
/*
* And drop the top bits
*/
intersect_16_16 = _cairo_int64_to_int32 (intersect_48_16);
*y_intersection = intersect_16_16;
return 1;
}
static cairo_fixed_16_16_t
_compute_x (cairo_line_t *line, cairo_fixed_t y)
2002-08-07 19:48:49 +00:00
{
cairo_fixed_16_16_t dx = line->p2.x - line->p1.x;
cairo_fixed_32_32_t ex = (cairo_fixed_48_16_t) (y - line->p1.y) * (cairo_fixed_48_16_t) dx;
cairo_fixed_16_16_t dy = line->p2.y - line->p1.y;
2002-08-07 19:48:49 +00:00
return line->p1.x + (ex / dy);
2002-08-07 19:48:49 +00:00
}
#if 0
2002-08-07 19:48:49 +00:00
static double
_compute_inverse_slope (cairo_line_t *l)
2002-08-07 19:48:49 +00:00
{
return (_cairo_fixed_to_double (l->p2.x - l->p1.x) /
_cairo_fixed_to_double (l->p2.y - l->p1.y));
2002-08-07 19:48:49 +00:00
}
static double
_compute_x_intercept (cairo_line_t *l, double inverse_slope)
2002-08-07 19:48:49 +00:00
{
return _cairo_fixed_to_double (l->p1.x) - inverse_slope * _cairo_fixed_to_double (l->p1.y);
2002-08-07 19:48:49 +00:00
}
static int
_line_segs_intersect_ceil (cairo_line_t *l1, cairo_line_t *l2, cairo_fixed_t *y_ret)
2002-08-07 19:48:49 +00:00
{
/*
* x = m1y + b1
* x = m2y + b2
* m1y + b1 = m2y + b2
* y * (m1 - m2) = b2 - b1
* y = (b2 - b1) / (m1 - m2)
*/
cairo_fixed_16_16_t y_intersect;
double m1 = _compute_inverse_slope (l1);
double b1 = _compute_x_intercept (l1, m1);
double m2 = _compute_inverse_slope (l2);
double b2 = _compute_x_intercept (l2, m2);
2002-08-07 19:48:49 +00:00
if (m1 == m2)
return 0;
y_intersect = _cairo_fixed_from_double ((b2 - b1) / (m1 - m2));
if (m1 < m2) {
cairo_line_t *t;
t = l1;
l1 = l2;
l2 = t;
}
/* Assuming 56 bits of floating point precision, the intersection
is accurate within one sub-pixel coordinate. We must ensure
that we return a value that is at or after the intersection. At
most, we must increment once. */
if (_compute_x (l2, y_intersect) > _compute_x (l1, y_intersect))
y_intersect++;
/* XXX: Hmm... Keith's error calculations said we'd at most be off
by one sub-pixel. But, I found that the paint-fill-BE-01.svg
test from the W3C SVG conformance suite definitely requires two
increments.
It could be that we need one to overcome the error, and another
to round up.
It would be nice to be sure this code is correct, (but we can't
do the while loop as it will work for way to long on
exceedingly distant intersections with large errors that we
really don't care about anyway as they will be ignored by the
calling function.
*/
if (_compute_x (l2, y_intersect) > _compute_x (l1, y_intersect))
y_intersect++;
/* XXX: hmm... now I found "intersection_killer" inside xrspline.c
that requires 3 increments. Clearly, we haven't characterized
this completely yet. */
if (_compute_x (l2, y_intersect) > _compute_x (l1, y_intersect))
y_intersect++;
/* I think I've found the answer to our problems. The insight is
that everytime we round we are changing the slopes of the
relevant lines, so we may be introducing new intersections that
we miss, so everything breaks apart. John Hobby wrote a paper
on how to fix this:
[Hobby93c] John D. Hobby, Practical Segment Intersection with
Finite Precision Output, Computation Geometry Theory and
Applications, 13(4), 1999.
Available online (2003-08017):
http://cm.bell-labs.com/cm/cs/doc/93/2-27.ps.gz
Now we just need to go off and implement that.
*/
*y_ret = y_intersect;
2002-08-07 19:48:49 +00:00
return 1;
}
#endif
/* The algorithm here is pretty simple:
inactive = [edges]
2003-07-18 11:34:19 +00:00
y = min_p1_y (inactive)
while (num_active || num_inactive) {
active = all edges containing y
2003-07-18 11:34:19 +00:00
next_y = min ( min_p2_y (active), min_p1_y (inactive), min_intersection (active) )
2003-07-18 11:34:19 +00:00
fill_traps (active, y, next_y, fill_rule)
y = next_y
}
The invariants that hold during fill_traps are:
All edges in active contain both y and next_y
No edges in active intersect within y and next_y
These invariants mean that fill_traps is as simple as sorting the
active edges, forming a trapezoid between each adjacent pair. Then,
either the even-odd or winding rule is used to determine whether to
emit each of these trapezoids.
Warning: This function obliterates the edges of the polygon provided.
*/
2003-07-18 11:34:19 +00:00
cairo_status_t
_cairo_traps_tessellate_polygon (cairo_traps_t *traps,
cairo_polygon_t *poly,
cairo_fill_rule_t fill_rule)
2002-08-07 19:48:49 +00:00
{
2003-07-18 11:34:19 +00:00
cairo_status_t status;
int i, active, inactive;
cairo_fixed_t y, y_next, intersect;
int in_out, num_edges = poly->num_edges;
2003-07-18 11:34:19 +00:00
cairo_edge_t *edges = poly->edges;
2002-08-14 00:44:28 +00:00
if (num_edges == 0)
2003-07-18 11:34:19 +00:00
return CAIRO_STATUS_SUCCESS;
2002-08-14 00:44:28 +00:00
2003-07-18 11:34:19 +00:00
qsort (edges, num_edges, sizeof (cairo_edge_t), _compare_cairo_edge_by_top);
2002-08-07 19:48:49 +00:00
y = edges[0].edge.p1.y;
active = 0;
inactive = 0;
while (active < num_edges) {
while (inactive < num_edges && edges[inactive].edge.p1.y <= y)
2002-08-07 19:48:49 +00:00
inactive++;
for (i = active; i < inactive; i++)
edges[i].current_x = _compute_x (&edges[i].edge, y);
qsort (&edges[active], inactive - active,
sizeof (cairo_edge_t), _compare_cairo_edge_by_current_x_slope);
2002-08-07 19:48:49 +00:00
/* find next inflection point */
y_next = edges[active].edge.p2.y;
for (i = active; i < inactive; i++) {
if (edges[i].edge.p2.y < y_next)
y_next = edges[i].edge.p2.y;
2002-08-07 19:48:49 +00:00
/* check intersect */
if (i != inactive - 1 && edges[i].current_x != edges[i+1].current_x)
if (_line_segs_intersect_ceil (&edges[i].edge, &edges[i+1].edge,
&intersect))
if (intersect > y && intersect < y_next)
y_next = intersect;
2002-08-07 19:48:49 +00:00
}
/* check next inactive point */
if (inactive < num_edges && edges[inactive].edge.p1.y < y_next)
y_next = edges[inactive].edge.p1.y;
2002-08-07 19:48:49 +00:00
/* walk the active edges generating trapezoids */
2002-08-07 19:48:49 +00:00
in_out = 0;
for (i = active; i < inactive - 1; i++) {
2003-07-18 11:34:19 +00:00
if (fill_rule == CAIRO_FILL_RULE_WINDING) {
if (edges[i].clockWise)
2002-08-07 19:48:49 +00:00
in_out++;
else
2002-08-07 19:48:49 +00:00
in_out--;
if (in_out == 0)
2002-08-07 19:48:49 +00:00
continue;
} else {
in_out++;
if ((in_out & 1) == 0)
2002-08-07 19:48:49 +00:00
continue;
}
status = _cairo_traps_add_trap (traps, y, y_next, &edges[i].edge, &edges[i+1].edge);
if (status)
return status;
2002-08-07 19:48:49 +00:00
}
/* delete inactive edges */
for (i = active; i < inactive; i++) {
if (edges[i].edge.p2.y <= y_next) {
memmove (&edges[active+1], &edges[active], (i - active) * sizeof (cairo_edge_t));
active++;
2002-08-07 19:48:49 +00:00
}
}
y = y_next;
2002-08-07 19:48:49 +00:00
}
2003-07-18 11:34:19 +00:00
return CAIRO_STATUS_SUCCESS;
2002-08-07 19:48:49 +00:00
}
static int
_cairo_trap_contains (cairo_trapezoid_t *t, cairo_point_t *pt)
{
cairo_slope_t slope_left, slope_pt, slope_right;
if (t->top > pt->y)
return 0;
if (t->bottom < pt->y)
return 0;
_cairo_slope_init (&slope_left, &t->left.p1, &t->left.p2);
_cairo_slope_init (&slope_pt, &t->left.p1, pt);
if (_cairo_slope_compare (&slope_left, &slope_pt) < 0)
return 0;
_cairo_slope_init (&slope_right, &t->right.p1, &t->right.p2);
_cairo_slope_init (&slope_pt, &t->right.p1, pt);
if (_cairo_slope_compare (&slope_pt, &slope_right) < 0)
return 0;
return 1;
}
int
_cairo_traps_contain (cairo_traps_t *traps, double x, double y)
{
int i;
cairo_point_t point;
point.x = _cairo_fixed_from_double (x);
point.y = _cairo_fixed_from_double (y);
for (i = 0; i < traps->num_traps; i++) {
if (_cairo_trap_contains (&traps->traps[i], &point))
return 1;
}
return 0;
}
2004-04-06 09:36:12 +00:00
#define MIN(a,b) ((a) < (b) ? (a) : (b))
#define MAX(a,b) ((a) > (b) ? (a) : (b))
static void
_cairo_trap_extents (cairo_trapezoid_t *t, cairo_box_t *extents)
{
cairo_fixed_t x;
if (t->top < extents->p1.y)
extents->p1.y = t->top;
if (t->bottom > extents->p2.y)
extents->p2.y = t->bottom;
x = MIN (_compute_x (&t->left, t->top),
_compute_x (&t->left, t->bottom));
if (x < extents->p1.x)
extents->p1.x = x;
x = MAX (_compute_x (&t->right, t->top),
_compute_x (&t->right, t->bottom));
if (x > extents->p2.x)
extents->p2.x = x;
}
void
_cairo_traps_extents (cairo_traps_t *traps, cairo_box_t *extents)
{
int i;
2004-04-20 12:35:44 +00:00
extents->p1.x = extents->p1.y = CAIRO_MAXSHORT << 16;
extents->p2.x = extents->p2.y = CAIRO_MINSHORT << 16;
2004-04-06 09:36:12 +00:00
for (i = 0; i < traps->num_traps; i++)
_cairo_trap_extents (&traps->traps[i], extents);
}