mirror of
https://gitlab.freedesktop.org/NetworkManager/NetworkManager.git
synced 2025-12-28 20:20:09 +01:00
read-only mirror of https://gitlab.freedesktop.org/NetworkManager/NetworkManager
An asynchronous request should either be cancellable or not keep
the target object alive. Preferably both.
Otherwise, it is impossible to do a controlled shutdown when terminating
NetworkManager. Currently, when NetworkManager is about to terminate,
it just quits the mainloop and essentially leaks everything. That is a
bug. If we ever want to fix that, every asynchronous request must be
cancellable in a controlled way (or it must not prevent objects from
getting disposed, where disposing the object automatically cancels the
callback).
Rework the asynchronous request for connectivity check to
- return a handle that can be used to cancel the operation.
Cancelling is optional. The caller may choose to ignore the handle
because the asynchronous operation does not keep the target object
alive. That means, it is still possible to shutdown, by everybody
giving up their reference to the target object. In which case the
callback will be invoked during dispose() of the target object.
- also, the callback will always be invoked exactly once, and never
synchronously from within the asynchronous start call. But during
cancel(), the callback is invoked synchronously from within cancel().
Note that it's only allowed to cancel an action at most once, and
never after the callback is invoked (also not from within the callback
itself).
- also, NMConnectivity already supports a fake handler, in case
connectivity check is disabled via configuration. Hence, reuse
the same code paths also when compiling without --enable-concheck.
That means, instead of having #if WITH_CONCHECK at various callers,
move them into NMConnectivity. The downside is, that if you build
without concheck, there is a small overhead compared to before. The
upside is, we reuse the same code paths when compiling with or without
concheck.
- also, the patch synchronizes the connecitivty states. For example,
previously `nmcli networking connectivity check` would schedule
requests in parallel, and return the accumulated result of the individual
requests.
However, the global connectivity state of the manager might have have
been the same as the answer to the explicit connecitivity check,
because while the answer for the manual check is waiting for all
pending checks to complete, the global connectivity state could
already change. That is just wrong. There are not multiple global
connectivity states at the same time, there is just one. A manual
connectivity check should have the meaning of ensure that the global
state is up to date, but it still should return the global
connectivity state -- not the answers for several connectivity checks
issued in parallel.
This is related to commit
|
||
|---|---|---|
| clients | ||
| contrib | ||
| data | ||
| dispatcher | ||
| docs | ||
| examples | ||
| introspection | ||
| libnm | ||
| libnm-core | ||
| libnm-glib | ||
| libnm-util | ||
| m4 | ||
| man | ||
| po | ||
| shared | ||
| src | ||
| tools | ||
| vapi | ||
| .dir-locals.el | ||
| .gitignore | ||
| .travis.yml | ||
| AUTHORS | ||
| autogen.sh | ||
| ChangeLog | ||
| config.h.meson | ||
| configure.ac | ||
| CONTRIBUTING | ||
| COPYING | ||
| linker-script-binary.ver | ||
| linker-script-devices.ver | ||
| linker-script-settings.ver | ||
| MAINTAINERS | ||
| Makefile.am | ||
| Makefile.examples | ||
| Makefile.glib | ||
| Makefile.vapigen | ||
| meson.build | ||
| meson_options.txt | ||
| meson_post_install.py | ||
| NetworkManager.pc.in | ||
| NEWS | ||
| README | ||
| TODO | ||
| valgrind.suppressions | ||
| zanata.xml | ||
****************** 2008-12-11: NetworkManager core daemon has moved to git.freedesktop.org! git clone git://git.freedesktop.org/git/NetworkManager/NetworkManager.git ****************** Networking that Just Works -------------------------- NetworkManager attempts to keep an active network connection available at all times. The point of NetworkManager is to make networking configuration and setup as painless and automatic as possible. NetworkManager is intended to replace default route, replace other routes, set IP addresses, and in general configure networking as NM sees fit (with the possibility of manual override as necessary). In effect, the goal of NetworkManager is to make networking Just Work with a minimum of user hassle, but still allow customization and a high level of manual network control. If you have special needs, we'd like to hear about them, but understand that NetworkManager is not intended for every use-case. NetworkManager will attempt to keep every network device in the system up and active, as long as the device is available for use (has a cable plugged in, the killswitch isn't turned on, etc). Network connections can be set to 'autoconnect', meaning that NetworkManager will make that connection active whenever it and the hardware is available. "Settings services" store lists of user- or administrator-defined "connections", which contain all the settings and parameters required to connect to a specific network. NetworkManager will _never_ activate a connection that is not in this list, or that the user has not directed NetworkManager to connect to. How it works: The NetworkManager daemon runs as a privileged service (since it must access and control hardware), but provides a D-Bus interface on the system bus to allow for fine-grained control of networking. NetworkManager does not store connections or settings, it is only the mechanism by which those connections are selected and activated. To store pre-defined network connections, two separate services, the "system settings service" and the "user settings service" store connection information and provide these to NetworkManager, also via D-Bus. Each settings service can determine how and where it persistently stores the connection information; for example, the GNOME applet stores its configuration in GConf, and the system settings service stores it's config in distro-specific formats, or in a distro- agnostic format, depending on user/administrator preference. A variety of other system services are used by NetworkManager to provide network functionality: wpa_supplicant for wireless connections and 802.1x wired connections, pppd for PPP and mobile broadband connections, DHCP clients for dynamic IP addressing, dnsmasq for proxy nameserver and DHCP server functionality for internet connection sharing, and avahi-autoipd for IPv4 link-local addresses. Most communication with these daemons occurs, again, via D-Bus. Why doesn't my network Just Work? Driver problems are the #1 cause of why NetworkManager sometimes fails to connect to wireless networks. Often, the driver simply doesn't behave in a consistent manner, or is just plain buggy. NetworkManager supports _only_ those drivers that are shipped with the upstream Linux kernel, because only those drivers can be easily fixed and debugged. ndiswrapper, vendor binary drivers, or other out-of-tree drivers may or may not work well with NetworkManager, precisely because they have not been vetted and improved by the open-source community, and because problems in these drivers usually cannot be fixed. Sometimes, command-line tools like 'iwconfig' will work, but NetworkManager will fail. This is again often due to buggy drivers, because these drivers simply aren't expecting the dynamic requests that NetworkManager and wpa_supplicant make. Driver bugs should be filed in the bug tracker of the distribution being run, since often distributions customize their kernel and drivers. Sometimes, it really is NetworkManager's fault. If you think that's the case, please file a bug at http://bugzilla.gnome.org and choose the NetworkManager component. Attaching the output of /var/log/messages or /var/log/daemon.log (wherever your distribution directs syslog's 'daemon' facility output) is often very helpful, and (if you can get) a working wpa_supplicant config file helps enormously.