mirror of
https://gitlab.freedesktop.org/NetworkManager/NetworkManager.git
synced 2026-01-06 22:30:19 +01:00
read-only mirror of https://gitlab.freedesktop.org/NetworkManager/NetworkManager
I'd like to refactor libnm's caching. Note that cached D-Bus objects
have repeated strings all over the place. For example every object will
have a set of D-Bus interfaces (strings) and properties (strings) and an
object path (which is referenced by other objects). We can save a lot of
redundant strings by deduplicating/interning them. Also, by interning
them, we can compare them using pointer equality.
Add a NMRefString implementation for this.
Maybe an alternative name would be NMInternedString or NMDedupString, because
this string gets always interned. There is no way to create a NMRefString
that is not interned. Still, NMRefString name sounds better. It is ref-counted
after all.
Notes:
- glib has GQuark and g_intern_string(). However, such strings cannot
be unrefered and are leaked indefinitely. It is thus unsuited for
anything but a fixed set of well-known strings.
- glib 2.58 adds GRefString, but we cannot use that because we
currently still use glib 2.40.
There are some differences:
- GRefString is just a typedef to char. That means, the glib API
exposes GRefString like regular character strings.
NMRefString intentionally does that not. This makes it slightly
less convenient to pass it to API that expects "const char *".
But it makes it clear to the reader, that an instance is in fact
a NMRefString, which means it indicates that the string is
interned and can be referenced without additional copy.
- GRefString can be optionally interned. That means you can
only use pointer equality for comparing values if you know
that the GRefString was created with g_ref_string_new_intern().
So, GRefString looks like a "const char *" pointer and even if
you know it's a GRefString, you might not know whether it is
interned. NMRefString is always interned, and you can always
compare it using pointer equality.
- In the past I already proposed a different implementation for a
ref-string. That made different choices. For example NMRefString
then was a typedef to "const char *", it did not support interning
but deduplication (without a global cache), ref/unref was not
thread safe (but then there was no global cache so that two threads
could still use the API independently).
The point is, there are various choices to make. GRefString, the
previous NMRefString implementation and the one here, all have pros and
cons. I think for the purpose where I intend NMRefString (dedup and
efficient comparison), it is a preferable implementation.
Ah, and of course NMRefString is an immutable string, which is a nice
property.
|
||
|---|---|---|
| clients | ||
| contrib | ||
| data | ||
| dispatcher | ||
| docs | ||
| examples | ||
| introspection | ||
| libnm | ||
| libnm-core | ||
| m4 | ||
| man | ||
| po | ||
| shared | ||
| src | ||
| tools | ||
| vapi | ||
| .dir-locals.el | ||
| .gitignore | ||
| .gitlab-ci.yml | ||
| .mailmap | ||
| .travis.yml | ||
| AUTHORS | ||
| autogen.sh | ||
| ChangeLog | ||
| config-extra.h.meson | ||
| config-extra.h.mk | ||
| config.h.meson | ||
| configure.ac | ||
| CONTRIBUTING | ||
| COPYING | ||
| COPYING.GFDL | ||
| COPYING.LGPL | ||
| linker-script-binary.ver | ||
| linker-script-devices.ver | ||
| linker-script-settings.ver | ||
| MAINTAINERS | ||
| Makefile.am | ||
| Makefile.examples | ||
| Makefile.glib | ||
| Makefile.vapigen | ||
| meson.build | ||
| meson_options.txt | ||
| NetworkManager.pc.in | ||
| NEWS | ||
| README | ||
| TODO | ||
| valgrind.suppressions | ||
****************** NetworkManager core daemon has moved to gitlab.freedesktop.org! git clone https://gitlab.freedesktop.org/NetworkManager/NetworkManager.git ****************** Networking that Just Works -------------------------- NetworkManager attempts to keep an active network connection available at all times. The point of NetworkManager is to make networking configuration and setup as painless and automatic as possible. NetworkManager is intended to replace default route, replace other routes, set IP addresses, and in general configure networking as NM sees fit (with the possibility of manual override as necessary). In effect, the goal of NetworkManager is to make networking Just Work with a minimum of user hassle, but still allow customization and a high level of manual network control. If you have special needs, we'd like to hear about them, but understand that NetworkManager is not intended for every use-case. NetworkManager will attempt to keep every network device in the system up and active, as long as the device is available for use (has a cable plugged in, the killswitch isn't turned on, etc). Network connections can be set to 'autoconnect', meaning that NetworkManager will make that connection active whenever it and the hardware is available. "Settings services" store lists of user- or administrator-defined "connections", which contain all the settings and parameters required to connect to a specific network. NetworkManager will _never_ activate a connection that is not in this list, or that the user has not directed NetworkManager to connect to. How it works: The NetworkManager daemon runs as a privileged service (since it must access and control hardware), but provides a D-Bus interface on the system bus to allow for fine-grained control of networking. NetworkManager does not store connections or settings, it is only the mechanism by which those connections are selected and activated. To store pre-defined network connections, two separate services, the "system settings service" and the "user settings service" store connection information and provide these to NetworkManager, also via D-Bus. Each settings service can determine how and where it persistently stores the connection information; for example, the GNOME applet stores its configuration in GConf, and the system settings service stores its config in distro-specific formats, or in a distro- agnostic format, depending on user/administrator preference. A variety of other system services are used by NetworkManager to provide network functionality: wpa_supplicant for wireless connections and 802.1x wired connections, pppd for PPP and mobile broadband connections, DHCP clients for dynamic IP addressing, dnsmasq for proxy nameserver and DHCP server functionality for internet connection sharing, and avahi-autoipd for IPv4 link-local addresses. Most communication with these daemons occurs, again, via D-Bus. Why doesn't my network Just Work? Driver problems are the #1 cause of why NetworkManager sometimes fails to connect to wireless networks. Often, the driver simply doesn't behave in a consistent manner, or is just plain buggy. NetworkManager supports _only_ those drivers that are shipped with the upstream Linux kernel, because only those drivers can be easily fixed and debugged. ndiswrapper, vendor binary drivers, or other out-of-tree drivers may or may not work well with NetworkManager, precisely because they have not been vetted and improved by the open-source community, and because problems in these drivers usually cannot be fixed. Sometimes, command-line tools like 'iwconfig' will work, but NetworkManager will fail. This is again often due to buggy drivers, because these drivers simply aren't expecting the dynamic requests that NetworkManager and wpa_supplicant make. Driver bugs should be filed in the bug tracker of the distribution being run, since often distributions customize their kernel and drivers. Sometimes, it really is NetworkManager's fault. If you think that's the case, please file a bug at: https://gitlab.freedesktop.org/NetworkManager/NetworkManager/issues Attaching NetworkManager debug logs from the journal (or wherever your distribution directs syslog's 'daemon' facility output, as /var/log/messages or /var/log/daemon.log) is often very helpful, and (if you can get) a working wpa_supplicant config file helps enormously. See the logging section of file contrib/fedora/rpm/NetworkManager.conf for how to enable debug logging in NetworkManager.