mirror of
https://gitlab.freedesktop.org/NetworkManager/NetworkManager.git
synced 2026-01-05 01:00:17 +01:00
read-only mirror of https://gitlab.freedesktop.org/NetworkManager/NetworkManager
Unslaving from a bridge causes a wrong RTM_DELLINK event for
the former slave.
# ip link add dummy0 type dummy
# ip link add bridge0 type bridge
# ip link set bridge0 up
# ip link set dummy0 master bridge0
# ip monitor link &
# ip link set dummy0 nomaster
18: dummy0: <BROADCAST,NOARP> mtu 1500 qdisc noop master bridge0 state DOWN group default
link/ether 76:44:5f:b9:38:02 brd ff:ff:ff:ff:ff:ff
18: dummy0: <BROADCAST,NOARP> mtu 1500 master bridge0 state DOWN
link/ether 76:44:5f:b9:38:02
Deleted 18: dummy0: <BROADCAST,NOARP> mtu 1500 master bridge0 state DOWN
link/ether 76:44:5f:b9:38:02
18: dummy0: <BROADCAST,NOARP> mtu 1500 qdisc noop state DOWN group default
link/ether 76:44:5f:b9:38:02 brd ff:ff:ff:ff:ff:ff
19: bridge0: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500 qdisc noqueue state DOWN group default
link/ether 00:00:00:00:00:00 brd ff:ff:ff:ff:ff:ff
19: bridge0: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500 qdisc noqueue state DOWN group default
link/ether 00:00:00:00:00:00 brd ff:ff:ff:ff:ff:ff
Previously, during do_request_link() we would remember the link that is
about to be requested (delayed_deletion) and delay processing a new
RTM_DELLINK message until the end of do_request_link() -- and possibly
forget about about the deletion, if RTM_DELLINK was followed by a
RTM_NEWLINK.
However, this hack does not catch the case where an external command
unslaves the link.
Instead just accept the wrong event and raise a "removed" signal right
away. This brings the cache in an externally visible, wrong state that
will be fixed by a following "added" signal.
Still do that because working around the kernel bug is complicated. Also,
we already might emit wrong "added" signals for devices that are already
removed. As a consequence, a user should not consider the platform signals
until all events are processed.
Listeners to that signal should accept that added/removed link changes
can be wrong and should preferably handle them idly, when the events
have settled.
It can even be worse, that a RTM_DELLINK is not fixed by a following
RTM_NEWLINK:
...
# ip link set dummy0 nomaster
36: dummy0: <BROADCAST,NOARP> mtu 1500 qdisc noop master bridge0 state DOWN
link/ether e2:f2:20:98:3a:be brd ff:ff:ff:ff:ff:ff
36: dummy0: <BROADCAST,NOARP> mtu 1500 master bridge0 state DOWN
link/ether e2:f2:20:98:3a:be
Deleted 36: dummy0: <BROADCAST,NOARP> mtu 1500 master bridge0 state DOWN
link/ether e2:f2:20:98:3a:be
37: bridge0: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500 qdisc noqueue state DOWN
link/ether 00:00:00:00:00:00 brd ff:ff:ff:ff:ff:ff
37: bridge0: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500 qdisc noqueue state DOWN
link/ether 00:00:00:00:00:00 brd ff:ff:ff:ff:ff:ff
So, when a slave is deleted, we have to refetch it too.
https://bugzilla.redhat.com/show_bug.cgi?id=1285719
(cherry picked from commit
|
||
|---|---|---|
| callouts | ||
| clients | ||
| contrib | ||
| data | ||
| docs | ||
| examples | ||
| include | ||
| initscript | ||
| introspection | ||
| libnm | ||
| libnm-core | ||
| libnm-glib | ||
| libnm-util | ||
| m4 | ||
| man | ||
| po | ||
| policy | ||
| src | ||
| tools | ||
| vapi | ||
| .dir-locals.el | ||
| .gitignore | ||
| .travis.yml | ||
| AUTHORS | ||
| autogen.sh | ||
| ChangeLog | ||
| configure.ac | ||
| CONTRIBUTING | ||
| COPYING | ||
| MAINTAINERS | ||
| Makefile.am | ||
| Makefile.glib | ||
| NetworkManager.pc.in | ||
| NEWS | ||
| README | ||
| TODO | ||
| valgrind.suppressions | ||
****************** 2008-12-11: NetworkManager core daemon has moved to git.freedesktop.org! git clone git://git.freedesktop.org/git/NetworkManager/NetworkManager.git ****************** Networking that Just Works -------------------------- NetworkManager attempts to keep an active network connection available at all times. The point of NetworkManager is to make networking configuration and setup as painless and automatic as possible. NetworkManager is intended to replace default route, replace other routes, set IP addresses, and in general configure networking as NM sees fit (with the possibility of manual override as necessary). In effect, the goal of NetworkManager is to make networking Just Work with a minimum of user hassle, but still allow customization and a high level of manual network control. If you have special needs, we'd like to hear about them, but understand that NetworkManager is not intended for every use-case. NetworkManager will attempt to keep every network device in the system up and active, as long as the device is available for use (has a cable plugged in, the killswitch isn't turned on, etc). Network connections can be set to 'autoconnect', meaning that NetworkManager will make that connection active whenever it and the hardware is available. "Settings services" store lists of user- or administrator-defined "connections", which contain all the settings and parameters required to connect to a specific network. NetworkManager will _never_ activate a connection that is not in this list, or that the user has not directed NetworkManager to connect to. How it works: The NetworkManager daemon runs as a privileged service (since it must access and control hardware), but provides a D-Bus interface on the system bus to allow for fine-grained control of networking. NetworkManager does not store connections or settings, it is only the mechanism by which those connections are selected and activated. To store pre-defined network connections, two separate services, the "system settings service" and the "user settings service" store connection information and provide these to NetworkManager, also via D-Bus. Each settings service can determine how and where it persistently stores the connection information; for example, the GNOME applet stores its configuration in GConf, and the system settings service stores it's config in distro-specific formats, or in a distro- agnostic format, depending on user/administrator preference. A variety of other system services are used by NetworkManager to provide network functionality: wpa_supplicant for wireless connections and 802.1x wired connections, pppd for PPP and mobile broadband connections, DHCP clients for dynamic IP addressing, dnsmasq for proxy nameserver and DHCP server functionality for internet connection sharing, and avahi-autoipd for IPv4 link-local addresses. Most communication with these daemons occurs, again, via D-Bus. Why doesn't my network Just Work? Driver problems are the #1 cause of why NetworkManager sometimes fails to connect to wireless networks. Often, the driver simply doesn't behave in a consistent manner, or is just plain buggy. NetworkManager supports _only_ those drivers that are shipped with the upstream Linux kernel, because only those drivers can be easily fixed and debugged. ndiswrapper, vendor binary drivers, or other out-of-tree drivers may or may not work well with NetworkManager, precisely because they have not been vetted and improved by the open-source community, and because problems in these drivers usually cannot be fixed. Sometimes, command-line tools like 'iwconfig' will work, but NetworkManager will fail. This is again often due to buggy drivers, because these drivers simply aren't expecting the dynamic requests that NetworkManager and wpa_supplicant make. Driver bugs should be filed in the bug tracker of the distribution being run, since often distributions customize their kernel and drivers. Sometimes, it really is NetworkManager's fault. If you think that's the case, please file a bug at http://bugzilla.gnome.org and choose the NetworkManager component. Attaching the output of /var/log/messages or /var/log/daemon.log (wherever your distribution directs syslog's 'daemon' facility output) is often very helpful, and (if you can get) a working wpa_supplicant config file helps enormously.