mirror of
https://gitlab.freedesktop.org/NetworkManager/NetworkManager.git
synced 2025-12-28 22:40:10 +01:00
read-only mirror of https://gitlab.freedesktop.org/NetworkManager/NetworkManager
A NMConnection tracks a list of NMSetting instances. For
each setting type, it only can track one instance, as is
clear by the API nm_connection_get_setting().
The number of different setting types is known at compile time,
currently it is 52. Also, we have an NMMetaSettingType enum,
which assigns each type a number.
Previously, we were tracking the settings in a GHashTable.
Rework that, to instead use a fixed size array.
Now every NMConnection instance consumes 52 * sizeof(pointer)
for the settings array. Previously, the GHashTable required to malloc
the "struct _GHashTable" (on 64bit that is about the size of 12
pointers) and for N settings it allocated two buffers (for
the key and the values) plus one buffer for the hash values. So,
it may or may not consume a bit more memory now, but also can lookup
settings directly without hashing.
When looking at all settings, we iterate the entire array. Most
entries will be NULL, so it's a question whether this could be done
better. But as the array is of a fixed, small size, naive iteration
is probably still faster and simpler than anything else.
---
Test: compiled with -O2, x86_64:
$ T=src/core/settings/plugins/ifcfg-rh/tests/test-ifcfg-rh; \
make -j 8 "$T" && \
"$T" 1>/dev/null && \
perf stat -r 200 -B "$T" 1>/dev/null
Before:
Performance counter stats for 'src/core/settings/plugins/ifcfg-rh/tests/test-ifcfg-rh' (200 runs):
338.39 msec task-clock:u # 0.962 CPUs utilized ( +- 0.68% )
0 context-switches:u # 0.000 K/sec
0 cpu-migrations:u # 0.000 K/sec
1,121 page-faults:u # 0.003 M/sec ( +- 0.03% )
1,060,001,815 cycles:u # 3.132 GHz ( +- 0.50% )
1,877,905,122 instructions:u # 1.77 insn per cycle ( +- 0.01% )
374,065,113 branches:u # 1105.429 M/sec ( +- 0.01% )
6,862,991 branch-misses:u # 1.83% of all branches ( +- 0.36% )
0.35185 +- 0.00247 seconds time elapsed ( +- 0.70% )
After:
Performance counter stats for 'src/core/settings/plugins/ifcfg-rh/tests/test-ifcfg-rh' (200 runs):
328.07 msec task-clock:u # 0.959 CPUs utilized ( +- 0.39% )
0 context-switches:u # 0.000 K/sec
0 cpu-migrations:u # 0.000 K/sec
1,130 page-faults:u # 0.003 M/sec ( +- 0.03% )
1,034,858,368 cycles:u # 3.154 GHz ( +- 0.33% )
1,846,714,951 instructions:u # 1.78 insn per cycle ( +- 0.00% )
369,754,267 branches:u # 1127.052 M/sec ( +- 0.01% )
6,594,396 branch-misses:u # 1.78% of all branches ( +- 0.23% )
0.34193 +- 0.00145 seconds time elapsed ( +- 0.42% )
(cherry picked from commit
|
||
|---|---|---|
| .gitlab-ci | ||
| contrib | ||
| data | ||
| docs | ||
| examples | ||
| introspection | ||
| m4 | ||
| man | ||
| po | ||
| src | ||
| tools | ||
| vapi | ||
| .clang-format | ||
| .dir-locals.el | ||
| .git-blame-ignore-revs | ||
| .gitignore | ||
| .gitlab-ci.yml | ||
| .lgtm.yml | ||
| .mailmap | ||
| .triage-policies.yml | ||
| AUTHORS | ||
| autogen.sh | ||
| ChangeLog | ||
| config-extra.h.meson | ||
| config-extra.h.mk | ||
| config.h.meson | ||
| configure.ac | ||
| CONTRIBUTING.md | ||
| COPYING | ||
| COPYING.GFDL | ||
| COPYING.LGPL | ||
| linker-script-binary.ver | ||
| linker-script-devices.ver | ||
| linker-script-settings.ver | ||
| lsan.suppressions | ||
| MAINTAINERS | ||
| Makefile.am | ||
| Makefile.examples | ||
| Makefile.glib | ||
| Makefile.vapigen | ||
| meson.build | ||
| meson_options.txt | ||
| NetworkManager.pc.in | ||
| NEWS | ||
| README | ||
| RELICENSE.md | ||
| TODO | ||
| valgrind.suppressions | ||
****************** NetworkManager core daemon has moved to gitlab.freedesktop.org! git clone https://gitlab.freedesktop.org/NetworkManager/NetworkManager.git ****************** Networking that Just Works -------------------------- NetworkManager attempts to keep an active network connection available at all times. The point of NetworkManager is to make networking configuration and setup as painless and automatic as possible. NetworkManager is intended to replace default route, replace other routes, set IP addresses, and in general configure networking as NM sees fit (with the possibility of manual override as necessary). In effect, the goal of NetworkManager is to make networking Just Work with a minimum of user hassle, but still allow customization and a high level of manual network control. If you have special needs, we'd like to hear about them, but understand that NetworkManager is not intended for every use-case. NetworkManager will attempt to keep every network device in the system up and active, as long as the device is available for use (has a cable plugged in, the killswitch isn't turned on, etc). Network connections can be set to 'autoconnect', meaning that NetworkManager will make that connection active whenever it and the hardware is available. "Settings services" store lists of user- or administrator-defined "connections", which contain all the settings and parameters required to connect to a specific network. NetworkManager will _never_ activate a connection that is not in this list, or that the user has not directed NetworkManager to connect to. How it works: The NetworkManager daemon runs as a privileged service (since it must access and control hardware), but provides a D-Bus interface on the system bus to allow for fine-grained control of networking. NetworkManager does not store connections or settings, it is only the mechanism by which those connections are selected and activated. To store pre-defined network connections, two separate services, the "system settings service" and the "user settings service" store connection information and provide these to NetworkManager, also via D-Bus. Each settings service can determine how and where it persistently stores the connection information; for example, the GNOME applet stores its configuration in GConf, and the system settings service stores its config in distro-specific formats, or in a distro- agnostic format, depending on user/administrator preference. A variety of other system services are used by NetworkManager to provide network functionality: wpa_supplicant for wireless connections and 802.1x wired connections, pppd for PPP and mobile broadband connections, DHCP clients for dynamic IP addressing, dnsmasq for proxy nameserver and DHCP server functionality for internet connection sharing, and avahi-autoipd for IPv4 link-local addresses. Most communication with these daemons occurs, again, via D-Bus. Why doesn't my network Just Work? Driver problems are the #1 cause of why NetworkManager sometimes fails to connect to wireless networks. Often, the driver simply doesn't behave in a consistent manner, or is just plain buggy. NetworkManager supports _only_ those drivers that are shipped with the upstream Linux kernel, because only those drivers can be easily fixed and debugged. ndiswrapper, vendor binary drivers, or other out-of-tree drivers may or may not work well with NetworkManager, precisely because they have not been vetted and improved by the open-source community, and because problems in these drivers usually cannot be fixed. Sometimes, command-line tools like 'iwconfig' will work, but NetworkManager will fail. This is again often due to buggy drivers, because these drivers simply aren't expecting the dynamic requests that NetworkManager and wpa_supplicant make. Driver bugs should be filed in the bug tracker of the distribution being run, since often distributions customize their kernel and drivers. Sometimes, it really is NetworkManager's fault. If you think that's the case, please file a bug at: https://gitlab.freedesktop.org/NetworkManager/NetworkManager/issues Attaching NetworkManager debug logs from the journal (or wherever your distribution directs syslog's 'daemon' facility output, as /var/log/messages or /var/log/daemon.log) is often very helpful, and (if you can get) a working wpa_supplicant config file helps enormously. See the logging section of file contrib/fedora/rpm/NetworkManager.conf for how to enable debug logging in NetworkManager.