This can be replaced by nm_utils_escaped_tokens_split().
Note that nm_utils_escaped_tokens_split() does not behave exactly
the same. For example, nm_utils_str_simpletokens_extract_next() would
remove all backslashes and leave only the following character.
nm_utils_escaped_tokens_split() instead only strips backslashes
that preceed a delimiter, whitespace or another backslash.
But we should have one preferred way of tokenizing, and I find this
preferable, because it allows for most backslashes to appear verbatim.
(cherry picked from commit ced7dbe8bf)
This escapes strings so that they can be concatenated with a delimiter
and without loss tokenized with nm_utils_escaped_tokens_split().
Note that this is similar to _nm_utils_escape_plain() and
_nm_utils_escape_spaces(). The difference is that
nm_utils_escaped_tokens_escape() also escapes the last trailing
whitespace. That means, if delimiters contains all NM_ASCII_SPACES, then
it is identical to _nm_utils_escape_spaces(). Otherwise, the trailing
space is treated specially. That is, because
nm_utils_escaped_tokens_split() uses NM_UTILS_STRSPLIT_SET_FLAGS_STRSTRIP,
to strip leading and trailing whitespace. To still express a trailing
whitespace, the last whitespace must be escaped. Note that
NM_UTILS_STRSPLIT_SET_FLAGS_STRSTRIP also honors escaping any whitespace
(not only at the last position), but when escaping we don't need to
escape them, because unescaped (non-trailing) whitespace are taken just
fine.
The pair nm_utils_escaped_tokens_split() and
nm_utils_escaped_tokens_escape() are proposed as default way of
tokenizing a list of items. For example, with
$ nmcli connection modify "$PROFILE" +ipv4.routing-rules 'priority 5 from 192.168.7.5/32 table 5, priority 6 iif a\, from 192.168.7.5/32 table 6'
Here we implement a to/from string function to handle one item
(nm_ip_routing_rule_{from,to}_string()). When such elements are combined with ',',
then we need to support an additional layer of escaping on top of that.
The advantage is that the indvidual to/from string functions are agnostic
to this second layer of escaping/tokenizing that nmcli employs to handle
a list of these items.
The disadvantage is that we possibly get multiple layers of backslash
escapings. That is only mitigated by the fact that nm_utils_escaped_tokens_*()
supports a syntax for which *most* characters don't need any special escaping.
Only delimiters, backslash, and the trailing space needs escaping, and
these are cases are expected to be few.
(cherry picked from commit e206e3d4d8)
Add a new flag that will remove escape characters after splitting
the string.
This implements a special kind of backslash escaping. It's not C escape
sequences (like '\n' or '\020'), but simply to take the special character
following the backslash verbatim. Note that the backslash is only
considered special, if it's followed by a delimiter, another backslash,
or a whitespace (in combination with %NM_UTILS_STRSPLIT_SET_FLAGS_STRSTRIP).
The main purpose of this form of escaping is nmcli's list options, like
$ nmcli connection modify "$PROFILE" +ipv4.routing-rules 'priority 5 from 192.168.7.5/32 table 5, priority 6 iif a\, from 192.168.7.5/32 table 6'
It's a contrieved example, but the list options are a list of IP
addresses, rules, etc. They implement their own syntax for one element,
and are concatenated by ','. To support that one element may have
arbitrary characters (including the delimiter and whitespaces), nmcli
employs a tokenization with this special kind of escaping.
(cherry picked from commit 9522aaf226)
This will essentially call g_strstrip() on each token.
There are some specialties:
- if the resulting word is empty after stripping, then according to
%NM_UTILS_STRSPLIT_SET_FLAGS_PRESERVE_EMPTY, the empty token will be
removed. If that results in an empty string array, %NULL will be
returned.
- if %NM_UTILS_STRSPLIT_SET_FLAGS_ALLOW_ESCAPING is set, then
whitespace that is backslash escaped is not removed.
Since this is a post-operation that happens after tokeninzing, it
could be done as a separate function. And we already have this function:
_nm_utils_unescape_plain() and _nm_utils_unescape_spaces().
However, that is ugly for several reasons:
- the stripping should be part of the tokenizing, you shouldn't need
several steps.
- nm_utils_strsplit_set_full() returns a "const char **" which
indicates the strings must not be freed. However, it is perfectly
valid to modify the string inplace. Hence, the post-op function
would need to cast the strings to "char *", which seems ugly
(although we do that on many places, and it's guaranteed to work).
- _nm_utils_unescape_plain()/_nm_utils_unescape_spaces() is indeed
already used together with nm_utils_strsplit_set_full(). However,
it requires to initialize the cb_lookup buffer twice. I would expect
that initializing the cb_lookup buffer is a large portion of what
the function does already (for short strings).
This issue will be solved in the next commit by adding yet another flag
which allows to unescape.
(cherry picked from commit 5b2b0dcadf)
Instead of growing the buffer for the tokens (and reallocating),
do one pre-run over the string and count the delimiters. This
way we know how much space we need and we don't need to
reallocate.
Interestingly, this is notably slower than the previous implementation,
because previously if would not bother determining the right number of
tokens but just over-allocate with a reasonable guess of 8 and grow the
buffer exponentially. Still, I like this better because while it may
be slower in common scenarios, it allocates the exact number of buffer
space.
Previously, nm_utils_strsplit_set_full() would always remove empty
tokens. Add a flag NM_UTILS_STRSPLIT_SET_FLAGS_PRESERVE_EMPTY to avoid
that.
This makes nm_utils_strsplit_set_full() return the same result as
g_strsplit_set() and a direct replacement for it -- except for "",
where we return %NULL.
Drop the next_char() and is_delimiter() macros. They are difficult to
understand, because they both have a state-variable (escaped).
Instead, the state of whether we handle an escape or not, shall only
depend on the current line of code.
The caller should make a conscious decision which delimiters to use.
Unfortunately, there is a variety of different demiters in use. This
should be unitfied and the callers should use one of a few specific
set of delimiters.
This could be unified by (re)using a define as delimiters, like
strv = nm_utils_strsplit_set_full (value, MULTILIST_WITH_ESCAPE_CHARS, NM_UTILS_STRSPLIT_SET_FLAGS_ALLOW_ESCAPING);
where MULTILIST_WITH_ESCAPE_CHARS has a particular meaning that should
be reused for similar uses.
However, leaving the delimiter at NULL is not good because it's unclear who
wants that default behavior (and what the default should be). Don't allow that.
There are almost no callers that relied on this default anyway.
Previously, this would re-implement what nm_strstrip_avoid_copy()
was doing.
Use nm_strstrip_avoid_copy_a() instead, which avoids the code
duplication and the heap allocation in common cases.
The main difference between "shared/nm-utils/nm-macros-internal.h" and
"shared/nm-utils/nm-shared-utils.h" is that the former is header-only
while the latter has a source file as well.
Apart from that, both headers are included everywhere.
The next commit will add nm_strstrip_avoid_copy_a() to
"nm-macros-internal.h" header, which will use nm_strndup_a().
Hence, also nm_strndup_a() should be in "nm-macros-internal.h".
"_str" is a very tempting name for a temporary variable.
Rename the variable in nm_strndup_a() macro, so that other macros can
call these (more general) macros (and still use the name "_str").
If we don't have explicit_bzero(), try a bit harder and use
a volatile pointer.
This is also what libsecret's egg_secure_clear() does [1]. However, for
us this is less important, because commonly we expect glibc to provide
a useable explicit_bzero().
[1] b5442654d4/egg/egg-secure-memory.c (L1352)
It's usually not necessary, because _nm_utils_unescape_spaces()
gets called after nm_utils_strsplit_set(), which already removes
the non-escaped spaces.
Still, for completeness, this should be here. Also, because with
this the function is useful for individual options (not delimiter
separate list values), to support automatically dropping leading or
trailing whitespace, but also support escaping them.
nm_utils_parse_inaddr() is trivial enough to reimplement it, instead of calling
nm_utils_parse_inaddr_bin(). Calling nm_utils_parse_inaddr_bin() involves several
things that don't matter for nm_utils_parse_inaddr() -- like assigning
out_addr_family or returning the binary address.
This removes libnm-glib, libnm-glib-vpn, and libnm-util for good.
The it has been replaced with libnm since NetworkManager 1.0, disabled
by default since 1.12 and no up-to-date distributions ship it for years
now.
Removing the libraries allows us to:
* Remove the horrible hacks that were in place to deal with accidental use
of both the new and old library in a single process.
* Relief the translators of maintenance burden of similar yet different
strings.
* Get rid of known bad code without chances of ever getting fixed
(libnm-glib/nm-object.c and libnm-glib/nm-object-cache.c)
* Generally lower the footprint of the releases and our workspace
If there are some really really legacy users; they can just build
libnm-glib and friends from the NetworkManager-1.16 distribution. The
D-Bus API is stable and old libnm-glib will keep working forever.
https://github.com/NetworkManager/NetworkManager/pull/308
Support importing ".conf" files as `wg-quick up` supports it.
`wg-quick` parses several options under "[Interface]" and
passes the remainder to `wg setconf`.
The PreUp/PreDown/PostUp/PostDown options are of course not supported.
"Table" for the moment behaves different.
[thaller@redhat.com: the code is effectively key_is_zero() by
<Jason@zx2c4.com> (LGPL2.1+). I took it into our source tree
and adjusted it to our style]
libnm exposes simplified variants of hexstr2bin in its public API. I
think that was a mistake, because libnm should provide NetworkManager
specific utils. It should not provide such string functions.
However, nmcli used to need this, so it was added to libnm.
The better approach is to add it to our internally shared static
library, so that all interested components can make use of it.
Will be used later. The point is to set an IP address from
unvalidated/untrusted input (that is, the data length might
not match the address-family).
Will be used later when parsing netlink attributes.
g_steal_pointer() as provided by glib improved significantly. Nowadays it
casts the return type via the non-standard typeof() operator.
But this useful feature is only enabled with
GLIB_VERSION_MAX_ALLOWED >= GLIB_VERSION_2_58
which NetworkManager does not set.
This macro is hardly rocket science. Always provide our own
implementation, that always does the casting (we rely on gcc/clang
to support typeof() already at many places).
A helper method, only useful for printf debugging -- and thus
unused in the source-tree.
It is relatively cumbersome to lookup the GType that implements
a property. For example, for NMDeviceBond.driver, it should return
NMDevice (which implements the "driver" property).
There is no advantage in having these as macros. Make them
inline functions, compiler should be able to decide that they
are in fact inlinable.
Also, don't call g_strcmp0() for nm_streq0(). It means we first
have to call glib function, only to call a glibc function. No need
for this abstraction.
Contrary to g_str_has_suffix(), it exploits the fact the the suffix length
is known at compile time. No need to call a glib function, to find out what
we already know, to call strcmp().
Instead just calculate the string length and call memcmp().