There should be a clear distinction between whether an array
is a NUL terminated string or binary with a length.
crypto_md5_hash() is already complicated enough. Adjust it's
API to only support binary arguments, and thus have "guint8 *" type.
the comment and code made it sound like parse_old_openssl_key_file() would
set @key_type if the parsing was only done partially. That is not the case,
@key_type is only set, if parsing was successful. Adjust the code.
While at it, don't require the caller to initialize @out_key_type. It's
just an enum, if we care to always set it, just do it.
We already had nm_free_secret() to clear the secret out
of a NUL terminated string. That works well for secrets
which are strings, it can be used with a cleanup attribute
(nm_auto_free_secret) and as a cleanup function for a
GBytes.
However, it does not work for secrets which are binary.
For those, we must also track the length of the allocated
data and clear it.
Add two new structs NMSecretPtr and NMSecretBuf to help
with that.
I think GSList is not a great data type. Most of the time when we used
it, we better had choosen another data type.
These utility functions were unused, and I think we should use GSList
less.
Drop them.
GBytes makes more sense, because it's immutable.
Also, since at other places we use GBytes, having
different types is combersome and requires needless
conversions.
Also:
- avoid nm_utils_escape_ssid() instead of _nm_utils_ssid_to_string().
We use nm_utils_escape_ssid() when we want to log the SSID. However, it
does not escape newlines, which is bad.
- also no longer use nm_utils_same_ssid(). Since it no longer
treated trailing NUL special, it is not different from
g_bytes_equal().
- also, don't use nm_utils_ssid_to_utf8() for logging anymore.
For logging, _nm_utils_ssid_escape_utf8safe() is better because
it is loss-less escaping which can be unambigously reverted.
We already have nm_utils_str_utf8safe_escape() to convert a
NUL termianted string to an UTF-8 string. nm_utils_str_utf8safe_escape()
operates under the assumption, that the input strig is already valid UTF-8
and returns the input string verbatim. That way, in the common expected
cases, the string just looks like a regular UTF-8 string.
However, in case there are invalid UTF-8 sequences (or a backslash
escape characters), the function will use backslash escaping to encode
the input string as a valid UTF-8 sequence. Note that the escaped
sequence, can be reverted to the original non-UTF-8 string via
unescape.
An example, where this is useful are file names or interface names.
Which are not in a defined encoding, but NUL terminated and commonly ASCII or
UTF-8 encoded.
Extend this, to also handle not NUL terminated buffers. The same
applies, except that the process cannot be reverted via g_strcompress()
-- because the NUL character cannot be unescaped.
This will be useful to escape a Wi-Fi SSID. Commonly we expect the SSID
to be in UTF-8/ASCII encoding and we want to print it verbatim. Only
if that is not the case, we fallback to backslash escaping. However, the
orginal value can be fully recovered via unescape(). The difference
between an SSID and a filename is, that the former can contain '\0'
bytes.
Add a new 'match' setting containing properties to match a connection
to devices. At the moment only the interface-name property is present
and, contrary to connection.interface-name, it allows the use of
wildcards.
As of upstream kernel v4.18-rc8.
Note that we name the features like they are called in ethtool's
ioctl API ETH_SS_FEATURES.
Except, for features like "tx-gro", which ethtool utility aliases
as "gro". So, for those features where ethtool has a built-in,
alternative name, we prefer the alias.
And again, note that a few aliases of ethtool utility ("sg", "tso", "tx")
actually affect more than one underlying kernel feature.
Note that 3 kernel features which are announced via ETH_SS_FEATURES are
explicitly exluded because kernel marks them as "never_changed":
#define NETIF_F_NEVER_CHANGE (NETIF_F_VLAN_CHALLENGED | \
NETIF_F_LLTX | NETIF_F_NETNS_LOCAL)
Also, add two more features "tx-tcp-segmentation" and
"tx-tcp6-segmentation". There are two reasons for that:
- systemd-networkd supports setting these two features,
so lets support them too (apparently they are important
enough for networkd).
- these two features are already implicitly covered by "tso".
Like for the "ethtool" program, "tso" is an alias for several
actual features. By adding two features that are already
also covered by an alias (which sets multiple kernel names
at once), we showcase how aliases for the same feature can
coexist. In particular, note how setting
"tso on tx-tcp6-segmentation off" will behave as one would
expect: all 4 tso features covered by the alias are enabled,
except that particular one.
Note that in NetworkManager API (D-Bus, libnm, and nmcli),
the features are called "feature-xyz". The "feature-" prefix
is used, because NMSettingEthtool possibly will gain support
for options that are not only -K|--offload|--features, for
example -C|--coalesce.
The "xzy" suffix is either how ethtool utility calls the feature
("tso", "rx"). Or, if ethtool utility specifies no alias for that
feature, it's the name from kernel's ETH_SS_FEATURES ("tx-tcp6-segmentation").
If possible, we prefer ethtool utility's naming.
Also note, how the features "feature-sg", "feature-tso", and
"feature-tx" actually refer to multiple underlying kernel features
at once. This too follows what ethtool utility does.
The functionality is not yet implemented server-side.
Add a new way how NMSetting subclasses can be implemented.
Currently, most NMSetting implementations realize all their properties
via GObject properties. That has some downsides:
- the biggest one, is the large effort to add new properties.
Most of them are implemented on a one-by-one basis and they come
with additional API (like native getter functions).
It makes it cumbersome to add more properties.
- for certain properties, it's hard to encode them entirely in
a GObject property. That results in unusable API like
NM_SETTING_IP_CONFIG_ADDRESSES, NM_SETTING_BOND_OPTIONS,
NM_SETTING_USER_DATA. These complex valued properties only
exist, because we currently always need GObject properties
to even implement simple functionality. For example,
nm_setting_duplicate() is entirely implemented via
nm_setting_enumerate_values(), which can only iterate
GObject properies. There is no reason why this is necessary.
Note also how nmcli badly handles bond options and VPN
data. That is only a shortcoming of nmcli and wouldn't
need to be that way. But it happend, because we didn't
keep an open mind that settings might be more than just
accessing GObject properties.
- a major point of NMSetting is to convert to/from a GVariant
from the D-Bus API. As NMSetting needs to squeeze all values
into the static GObject structure, there is no place to
encode invalid or unknown properties. Optimally,
_nm_setting_new_from_dbus() does not loose any information
and a subsequent _nm_setting_to_dbus() can restore the original
variant. That is interesting, because we want that an older
libnm client can talk to a newer NetworkManager version. The
client needs to handle unknown properties gracefully to stay
forward compatible. However, it also should not just drop the
properties on the floor.
Note however, optimally we want that nm_setting_verify() still
can reject settings that have such unknown/invalid values. So,
it should be possible to create an NMSetting instance without
error or loosing information. But verify() should be usable to
identify such settings as invalid.
They also have a few upsides.
- libnm is heavily oriented around GObject. So, we generate
our nm-settings manual based on the gtk-doc. Note however,
how we fail to generate a useful manual for bond.options.
Also note, that there is no reason we couldn't generate
great documentation, even if the properties are not GObject
properties.
- GObject properties do give some functionality like meta-data,
data binding and notification. However, the meta-data is not
sufficient on its own. Note how keyfile and nmcli need extensive
descriptor tables on top of GObject properties, to make this
useful. Note how GObject notifications for NMSetting instances
are usually not useful, aside for data binding like nmtui does.
Also note how NMSettingBond already follows a different paradigm
than using GObject properties. Nowdays, NMSettingBond is considered
a mistake (related bug rh#1032808). Many ideas of NMSettingBond
are flawed, like exposing an inferiour API that reduces everything
to a string hash. Also, it only implemented the options hash inside
NMSettingBond. That means, if we would consider this a good style,
we would have to duplicate this approach in each new setting
implementation.
Add a new style to track data for NMSetting subclasses. It keeps
an internal hash table with all GVariant properies. Also, the
functionality is hooked into NMSetting base class, so all future
subclasses that follow this way, can benefit from this. This approach
has a few similiarties with NMSettingBond, but avoids its flaws.
With this, we also no longer need GObject properties (if we would
also implement generating useful documentation based on non-gkt-doc).
They may be added as accessors if they are useful, but there is no
need for them.
Also, handling the properties as a hash of variants invites for a
more generic approach when handling them. While we still could add
accessors that operate on a one-by-one bases, this leads to a more
generic usage where we apply common functionality to a set of properties.
Also, this is for the moment entirely internal and an implementation
detail. It's entirely up to the NMSetting subclass to make use of this
new style. Also, there are little hooks for the subclass available.
If they turn out to be necessary, they might be added. However, for
the moment, the functionality is restricted to what is useful and
necessary.
NMSetting internally already tracked a list of all proper GObject properties
and D-Bus-only properties.
Rework the tracking of the list, so that:
- instead of attaching the data to the GType of the setting via
g_type_set_qdata(), it is tracked in a static array indexed by
NMMetaSettingType. This allows to find the setting-data by simple
pointer arithmetic, instead of taking a look and iterating (like
g_type_set_qdata() does).
Note, that this is still thread safe, because the static table entry is
initialized in the class-init function with _nm_setting_class_commit().
And it only accessed by following a NMSettingClass instance, thus
the class constructor already ran (maybe not for all setting classes,
but for the particular one that we look up).
I think this makes initialization of the metadata simpler to
understand.
Previously, in a first phase each class would attach the metadata
to the GType as setting_property_overrides_quark(). Then during
nm_setting_class_ensure_properties() it would merge them and
set as setting_properties_quark(). Now, during the first phase,
we only incrementally build a properties_override GArray, which
we finally hand over during nm_setting_class_commit().
- sort the property infos by name and do binary search.
Also expose this meta data types as internal API in nm-setting-private.h.
While not accessed yet, it can prove beneficial, to have direct (internal)
access to these structures.
Also, rename NMSettingProperty to NMSettInfoProperty to use a distinct
naming scheme. We already have 40+ subclasses of NMSetting that are called
NMSetting*. Likewise, NMMetaSetting* is heavily used already. So, choose a
new, distinct name.
We have NMMetaSettingType enum, which is an enum of all setting types.
We also have an efficient way to get the enum (and its NMMetaSettingInfo)
from an NMSetting, setting-name and GType.
No longer maintain the vtable for keyfile by "setting-name". Instead,
index it by NMMetaSettingType enum.
That way, we get efficient lookup, and don't need to duplicate the
functionality of finding the vtable entry for a setting.
Previously, each (non abstract) NMSetting class had to register
its name and priority via _nm_register_setting().
Note, that libnm-core.la already links against "nm-meta-setting.c",
which also redundantly keeps track of the settings name and gtype
as well.
Re-use NMMetaSettingInfo also in libnm-core.la, to track this meta
data.
The goal is to get rid of private data structures that track
meta data about NMSetting classes. In this case, "registered_settings"
hash. Instead, we should have one place where all this meta data
is tracked. This was, it is also accessible as internal API,
which can be useful (for keyfile).
Note that NMSettingClass has some overlap with NMMetaSettingInfo.
One difference is, that NMMetaSettingInfo is const, while NMSettingClass
is only initialized during the class_init() method. Appart from that,
it's mostly a matter of taste, whether we attach meta data to
NMSettingClass, to NMMetaSettingInfo, or to a static-array indexed
by NMMetaSettingType.
Note, that previously, _nm_register_setting() was private API. That
means, no user could subclass a functioning NMSetting instance. The same
is still true: NMMetaSettingInfo is internal API and users cannot access
it to create their own NMSetting subclasses. But that is almost desired.
libnm is not designed, to be extensible via subclassing, nor is it
clear why that would be a useful thing to do. One day, we should remove
the NMSetting and NMSettingClass definitions from public headers. Their
only use is subclassing the types, which however does not work.
While libnm-core was linking already against nm-meta-setting.c,
nm_meta_setting_infos was unreferenced. So, this change increases
the binary size of libnm and NetworkManager (1032 bytes). Note however
that roughly the same information was previously allocated at runtime.
- Don't use @parent_class name. This local variable (and @object_class) is
the class instance up-cast to the pointer types of the parents. The point
here is not that it is the direct parent. The point is, that it's the
NMSettingClass type.
Also, it can only be used inconsistently, in face of NMSettingIP4Config,
who's parent type is NMSettingIPConfig. Clearly, inside
nm-setting-ip4-config.c we wouldn't want to use the "parent_class"
name. Consistently rename @parent_class to @setting_class.
- Also rename the pointer to the own class to @klass. "setting_class" is also the
wrong name for that, because the right name would be something like
"setting_6lowpan_class".
However, "klass" is preferred over the latter, because we commonly create new
GObject implementations by copying an existing one. Generic names like "klass"
and "self" inside a type implementation make that simpler.
- drop useless comments like
/* virtual functions */
/* Properties */
It's better to logically and visually structure the code, and avoid trival
remarks about that. They only end up being used inconsistently. If you
even need a stronger visual separator, then an 80 char /****/ line
should be preferred.
Properties that are backed by a GObject property are fundamentally
different.
I think it's clearer to rework the check, to first check whether
we have a param_spec, and then implement different checks.
Add a new option that allows to activate a profile multiple times
(at the same time). Previoulsy, all profiles were implicitly
NM_SETTING_CONNECTION_MULTI_CONNECT_SINGLE, meaning, that activating
a profile that is already active will deactivate it first.
This will make more sense, as we also add more match-options how
profiles can be restricted to particular devices. We already have
connection.type, connection.interface-name, and (ethernet|wifi).mac-address
to restrict a profile to particular devices. For example, it is however
not possible to specify a wildcard like "eth*" to match a profile to
a set of devices by interface-name. That is another missing feature,
and once we extend the matching capabilities, it makes more sense to
activate a profile multiple times.
See also https://bugzilla.redhat.com/show_bug.cgi?id=997998, which
previously changed that a connection is restricted to a single activation
at a time. This work relaxes that again.
This only adds the new property, it is not used nor implemented yet.
https://bugzilla.redhat.com/show_bug.cgi?id=1555012
_nm_utils_init() is a __attribute__((constructor)) function,
that is, it runs during dlopen().
On the other head, g_module_open() itself calls dlopen().
It is prone to deadlock. Don't do it.
The check is only an aggressive assertion to crash the application
if it wrongly loads libnm and libnm-util/libnm-glib at the same time.
If that happens, all is lost already. We can just as well call the
assertion later. It's not supposed to fail anyway.
https://bugzilla.gnome.org/show_bug.cgi?id=796804
Utilize _nm_setting_to_dbus() to serialize the setting. The main reason
is that this way we can also print the more complicated values
g_strdup_value_contents() can't grok, e.g. the GArrays and GHashTables.
Some effort was spent on tidying up the results in a manner it was done
previously, instead of reducing this to a plain g_variant_print(). It
looks good that way:
Before:
vpn
service-type : "org.freedesktop.NetworkManager.VPN.Novpn" (s)
user-name : NULL (sd)
persistent : FALSE (sd)
data : ((GHashTable*) 0xc61060) (s)
secrets : ((GHashTable*) 0xdda640) (s)
timeout : 0 (sd)
After:
vpn
service-type : 'org.freedesktop.NetworkManager.VPN.Novpn'
data : {'gateway': 'novpn.example.com', 'username': 'hello'}
secrets : {'password': 'world'}
Note that no effort was spent on printing the defaults. There are
multiple ways that could be achieved, but I'm not sure it would be all
that necessary given this is really just a quick'n'dirty debugging facilty.
Note the special error codes NM_UTILS_ERROR_CONNECTION_AVAILABLE_*.
This will be used to determine, whether the profile is fundamentally
incompatible with the device, or whether just some other properties
mismatch. That information will be importand during a plain `nmcli
connection up`, where NetworkManager searches all devices for a device
to activate. If no device is found (and multiple errors happened),
we want to show the error that is most likely relevant for the user.
Also note, how NMDevice's check_connection_compatible() uses the new
class field "device_class->connection_type_check_compatible" to simplify
checks for compatible profiles.
The error reason is still unused.
1) the command line gets shorter. I frequently run `make V=1` to see
the command line arguments for the compiler, and there is a lot
of noise.
2) define each of these variables at one place. This makes it easy
to verify that for all compilation units, a particular
define has the same value. Previously that was not obvious or
even not the case (see commit e5d1a71396
and commit d63cf1ef2f).
The point is to avoid redundancy.
3) not all compilation units need all defines. In fact, most modules
would only need a few of these defines. We aimed to pass the necessary
minium of defines to each compilation unit, but that was non-obvious
to get right and often we set a define that wasn't used. See for example
"src_settings_plugins_ibft_cppflags" which needlessly had "-DSYSCONFDIR".
This question is now entirely avoided by just defining all variables in
a header. We don't care to find the minimum, because every component
gets anyway all defines from the header.
4) this also avoids the situation, where a module that previously did
not use a particular define gets modified to require it. Previously,
that would have required to identify the missing define, and add
it to the CFLAGS of the complation unit. Since every compilation
now includes "config-extra.h", all defines are available everywhere.
5) the fact that each define is now available in all compilation units
could be perceived as a downside. But it isn't, because these defines
should have a unique name and one specific value. Defining the same
name with different values, or refer to the same value by different
names is a bug, not a desirable feature. Since these defines should
be unique accross the entire tree, there is no problem in providing
them to every compilation unit.
6) the reason why we generate "config-extra.h" this way, instead of using
AC_DEFINE() in configure.ac, is due to the particular handling of
autoconf for directory variables. See [1].
With meson, it would be trivial to put them into "config.h.meson".
While that is not easy with autoconf, the "config-extra.h" workaround
seems still preferable to me.
[1] https://www.gnu.org/software/autoconf/manual/autoconf-2.63/html_node/Installation-Directory-Variables.html